999 resultados para Airway-resistance
Resumo:
Objective: To evaluate the effect of rapid maxillary expansion (RME) on the dimension of the nasopharyngeal space and its relation to nasal airway resistance. Methods: Twenty-five school-age children (from 7 to 10 year-old) with mouth and/or mixed breathing, with mixed dentition and uni- or bilateral posterior crossbite involving the deciduous canines and the first permanent molars, were evaluated. RME was placed and remained during 90 days. Rhinomanometry and orthodontic documentation were performed at four different times, i.e., before (T(1)), immediately after (T(2)), 90 days (T(3)) and 30 months (T(4)) after RME. Results: Differences in nasopharyngeal area and in nasal airway resistance were observed only 30 months after RME, and could be explained by facial growth, and not because of the orthodontic procedure. Conclusion: RME does not influence on nasopharyngeal area or nasal airway resistance in long-term evaluation. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Rapid maxillary expansion (RME) may improve the nasal respiratory pattern This study was performed to evaluate the effect of RME on the nasal cavity by acoustic rhinometry and computed rhinomanometry and to determine nasal and maxillary width by posteroanterior cephalometric radiography, up to 30 months after the orthodontic procedure Methods: Twenty-seven children with oral breathing, ranging in age from 7 to 70 years, and with mixed dentition were selected The children had unior bilateral posterior crossbite involving deciduous canines and the first permanent molars All subjects were submitted to nasofibroscopy, acoustic rhinometry, and computed rhinomanometry and posteroanterior cephalometric radiography at four different tunes, i e, before expansion, immediately, 90 days and 30 months after expansion Results: The mean linear left-to-right nasal cavity lateral prominence and left-to-right jugal ponds cephalometric measures increased considerably after expansion and this increase was maintained throughout the period of evaluation There was an immediate significant decrease in nasal resistance, up to 90 days after RME, but the nasal resistance increased 30 months after the procedure The acoustic rhinometry results did not show any difference in values throughout time Conclusion: RME significantly increased nasal and maxillary width as measured by frontal cephalometry, but the nasal mucosal effects were more subtle Also, the influence of RME on nasal resistance was not stable, and nasal resistance values returned to close to the initial ones after 30 months (Am J Rhinol Allergy 24, 161-165, 2010, doi 10.2500/ajra.2010.24.3440)
Resumo:
BACKGROUND: Retention of airway secretions is a common and serious problem in ventilated patients. Treating or avoiding secretion retention with mucus thinning, patient-positioning, airway suctioning, or chest or airway vibration or percussion may provide short-term benefit. METHODS: In a series of laboratory experiments with a test-lung system we examined the role of ventilator settings and lung-impedance on secretion retention and expulsion. Known quantities of a synthetic dye-stained mucus simulant with clinically relevant properties were injected into a transparent tube the diameter of an adult trachea and exposed to various mechanical-ventilation conditions. Mucus-simulant movement was measured with a photodensitometric technique and examined with image-analysis software. We tested 2 mucus-simulant viscosities and various peak flows, inspiratory/ expiratory flow ratios, intrinsic positive end-expiratory pressures, ventilation waveforms, and impedance values. RESULTS: Ventilator settings that produced flow bias had a major effect on mucus movement. Expiratory How bias associated with intrinsic positive end-expiratory pressure generated by elevated minute ventilation moved mucus toward the airway opening, whereas intrinsic positive end-expiratory pressure generated by increased airway resistance moved the mucus toward the lungs. Inter-lung transfer of mucus simulant occurred rapidly across the ""carinal divider"" between interconnected test lungs set to radically different compliances; the mucus moved out of the low-compliance lung and into the high-compliance lung. CONCLUSIONS: The movement of mucus simulant was influenced by the ventilation pattern and lung impedance. Flow bias obtained with ventilator settings may clear or embed mucus during mechanical ventilation.
Resumo:
The contribution of respiratory muscle work to the development of the O(2) consumption (Vo(2)) slow component is a point of controversy because it has been shown that the increased ventilation in hypoxia is not associated with a concomitant increase in Vo(2) slow component. The first purpose of this study was thus to test the hypothesis of a direct relationship between respiratory muscle work and Vo(2) slow component by manipulating inspiratory resistance. Because the conditions for a Vo(2) slow component specific to respiratory muscle can be reached during intense exercise, the second purpose was to determine whether respiratory muscles behave like limb muscles during heavy exercise. Ten trained subjects performed two 8-min constant-load heavy cycling exercises with and without a threshold valve in random order. Vo(2) was measured breath by breath by using a fast gas exchange analyzer, and the Vo(2) response was modeled after removal of the cardiodynamic phase by using two monoexponential functions. As anticipated, when total work was slightly increased with loaded inspiratory resistance, slight increases in base Vo(2), the primary phase amplitude, and peak Vo(2) were noted (14.2%, P < 0.01; 3.5%, P > 0.05; and 8.3%, P < 0.01, respectively). The bootstrap method revealed small coefficients of variation for the model parameter, including the slow-component amplitude and delay (15 and 19%, respectively), indicating an accurate determination for this critical parameter. The amplitude of the Vo(2) slow component displayed a 27% increase from 8.1 +/- 3.6 to 10.3 +/- 3.4 ml. min(-1). kg(-1) (P < 0.01) with the addition of inspiratory resistance. Taken together, this increase and the lack of any differences in minute volume and ventilatory parameters between the two experimental conditions suggest the occurrence of a Vo(2) slow component specific to the respiratory muscles in loaded condition.
Resumo:
STUDY OBJECTIVES: We sought to determine the effect of expiratory positive airway pressure on end expiratory lung volume (EELV) and sleep disordered breathing in obstructive sleep apnea patients. DESIGN: Observational physiology study PARTICIPANTS: We studied 10 OSA patients during sleep wearing a facial mask. We recorded 1 hour of NREM sleep without treatment (baseline) and 1 hour with 10 cm H2O EPAP in random order, while measuring EELV and breathing pattern. RESULTS: The mean EELV change between baseline and EPAP was only 13.3 mL (range 2-25 mL). Expiratory time was significantly increased with EPAP compared to baseline 2.64 +/- 0.54 vs 2.16 +/- 0.64 sec (P = 0.002). Total respiratory time was longer with EPAP than at baseline 4.44 +/- 1.47 sec vs 3.73 +/- 0.88 sec (P = 0.3), and minute ventilation was lower with EPAP vs baseline 7.9 +/- 4.17 L/min vs 9.05 +/- 2.85 L/min (P = 0.3). For baseline (no treatment) and EPAP respectively, the mean apnea+hypopnea index (AHI) was 62.6 +/- 28.7 and 56.8 +/- 30.3 events per hour (P = 0.4). CONCLUSION: In OSA patients during sleep, the application of 10 cm H2O EPAP led to prolongation of expiratory time with only marginal increases in FRC. These findings suggest important mechanisms exist to avoid hyperinflation during sleep.
Resumo:
Paralysis with pancuronium bromide is used in newborn infants to facilitate ventilatory support during respiratory failure. Changes in lung mechanics have been attributed to paralysis. The aim of this study was to examine whether or not paralysis per se has an influence on the passive respiratory mechanics, resistance (Rrs) and compliance (Crs) of the respiratory system in newborn infants. In 30 infants with acute respiratory failure, Rrs was measured during paralysis with pancuronium bromide and after stopping pancuronium bromide (group A). Rrs was also measured in an additional 10 ventilated infants in a reversed fashion (group B): Rrs was measured first in nonparalysed infants and then they were paralysed, mainly for diagnostic procedures, and the Rrs measurement repeated. As Rrs is highly dependent on lung volume, several parameters, that depend directly on lung volume were recorded: inspiratory oxygen fraction (FI,O2), arterial oxygen tension/alveolar oxygen tension (a/A) ratio and volume above functional residual capacity (FRC). In group A, the Rrs was not different during (0.236+/-0.09 cmH2O x s x mL(-1)) and after (0.237+/-0.07 cmH2O x s x mL(-1)) paralysis. Also, in group B, Rrs did not change (0.207+/-0.046 versus 0.221+/-0.046 cm x s x mL(-1) without versus with pancuronium bromide). FI,O2, a/A ratio and volume above FRC remained constant during paralysis. These data demonstrate that paralysis does not influence the resistance of the total respiratory system in ventilated term and preterm infants when measured at comparable lung volumes.
Resumo:
OBJECTIVE: To assess the suitability of a hot-wire anemometer infant monitoring system (Florian, Acutronic Medical Systems AG, Hirzel, Switzerland) for measuring flow and tidal volume (Vt) proximal to the endotracheal tube during high-frequency oscillatory ventilation. DESIGN: In vitro model study. SETTING: Respiratory research laboratory. SUBJECT: In vitro lung model simulating moderate to severe respiratory distress. INTERVENTION: The lung model was ventilated with a SensorMedics 3100A ventilator. Vt was recorded from the monitor display (Vt-disp) and compared with the gold standard (Vt-adiab), which was calculated using the adiabatic gas equation from pressure changes inside the model. MEASUREMENTS AND MAIN RESULTS: A range of Vt (1-10 mL), frequencies (5-15 Hz), pressure amplitudes (10-90 cm H2O), inspiratory times (30% to 50%), and Fio2 (0.21-1.0) was used. Accuracy was determined by using modified Bland-Altman plots (95% limits of agreement). An exponential decrease in Vt was observed with increasing oscillatory frequency. Mean DeltaVt-disp was 0.6 mL (limits of agreement, -1.0 to 2.1) with a linear frequency dependence. Mean DeltaVt-disp was -0.2 mL (limits of agreement, -0.5 to 0.1) with increasing pressure amplitude and -0.2 mL (limits of agreement, -0.3 to -0.1) with increasing inspiratory time. Humidity and heating did not affect error, whereas increasing Fio2 from 0.21 to 1.0 increased mean error by 6.3% (+/-2.5%). CONCLUSIONS: The Florian infant hot-wire flowmeter and monitoring system provides reliable measurements of Vt at the airway opening during high-frequency oscillatory ventilation when employed at frequencies of 8-13 Hz. The bedside application could improve monitoring of patients receiving high-frequency oscillatory ventilation, favor a better understanding of the physiologic consequences of different high-frequency oscillatory ventilation strategies, and therefore optimize treatment.
Resumo:
Chronic obstructive pulmonary disease (COPD) is associated with inflammatory cell reactions, tissue destruction and lung remodeling. Many signaling pathways for these phenomena are still to be identified. We developed a mouse model of COPD to evaluate some pathophysiological mechanisms acting during the initial stage of the disease. Forty-seven 6- to 8-week-old female C57/BL6 mice (approximately 22 g) were exposed for 2 months to cigarette smoke and/or residual oil fly ash (ROFA), a concentrate of air pollution. We measured lung mechanics, airspace enlargement, airway wall thickness, epithelial cell profile, elastic and collagen fiber deposition, and by immunohistochemistry transforming growth factor-β1 (TGF-β1), macrophage elastase (MMP12), neutrophils and macrophages. We observed regional airspace enlargements near terminal bronchioles associated with the exposure to smoke or ROFA. There were also increases in airway resistance and thickening of airway walls in animals exposed to smoke. In the epithelium, we noted a decrease in the ciliated cell area of animals exposed to smoke and an increase in the total cell area associated with exposure to both smoke and ROFA. There was also an increase in the expression of TGF-β1 both in the airways and parenchyma of animals exposed to smoke. However, we could not detect inflammatory cell recruitment, increases in MMP12 or elastic and collagen fiber deposition. After 2 months of exposure to cigarette smoke and/or ROFA, mice developed regional airspace enlargements and airway epithelium remodeling, although no inflammation or increases in fiber deposition were detected. Some of these phenomena may have been mediated by TGF-β1.
Resumo:
BACKGROUND: The interrupter technique is increasingly used in preschool children to assess airway resistance (Rint). Use of a bacterial filter is essential for prevention of cross-infection in a clinical setting. It is not known how large an effect this extra resistance and compliance exert upon interrupter measurements, especially on obstructive airways and in smaller children. We aim to determine the contribution of the filter to Rint, in a sample of children attending lung function testing at an asthma clinic. METHODS: Interrupter measurements were performed according to ATS/ERS guidelines during quiet normal breathing at an expiratory flow trigger of 200 ml s(-1), with the child seated upright with cheeks supported and wearing a nose clip. A minimum of 10 interrupter measurements was made with and without a bacterial filter. Spirometric and plethysmographic tests were also performed. RESULTS: A small but significant difference (0.12 (95% CI 0.06-0.17) kPa s L(-1), P = 0.0002) with 2x SD of 0.34 kPa s L(-1) was observed between Rint with and without filter in 39 children, with a large spread. This difference was not dependent on Rint magnitude, age or height, nor on lung function parameters (effective resistance, forced expiratory volume in 1 sec, and maximal expiratory flow at 50% of expired vital capacity). CONCLUSIONS: A bacterial filter causes a small difference but is not clinically significant, with a wide spread comparable to the variability of the technique and recommended cut-offs for assessing repeatability and bronchodilation. Age, height or severity of obstruction need not be corrected for in general.
Resumo:
To investigate the contribution of interleukin-4 (IL-4) to airway inflammation in vivo and to explore directly its relationship to airway reactivity, we created transgenic mice in which the murine cDNA for IL-4 was regulated by the rat Clara cell 10 protein promoter. Expression was detected only in the lung and not in thymus, heart, liver, spleen, kidney, or uterus. The expression of IL-4 elicited hypertrophy of epithelial cells of the trachea, bronchi, and bronchioles. Hypertrophy is due, at least in part, to the accumulation of mucus glycoprotein. Histologic examination of parenchyma revealed multinucleated macrophages and occasional islands of cells consisting largely of eosinophils or lymphocytes. Analysis of lung lavage fluid revealed the presence of a leukocytic infiltrate consisting of lymphocytes, neutrophils and eosinophils. Mice expressing IL-4 had greater baseline airway resistance but did not demonstrate hyperreactivity to methacholine. Thus, the expression of IL-4 selectively within the lung elicits an inflammatory response characterized by epithelial cell hypertrophy, and the accumulation of macrophages, lymphocytes, eosinophils, and neutrophils without resulting in an alteration in airway reactivity to inhaled methacholine.
Resumo:
Obesity is a major risk factor for asthma. Likewise, obesity is known to increase disease severity in asthmatic subjects and also to impair the efficacy of first-line treatment medications for asthma, worsening asthma control in obese patients. This concept is in agreement with the current understanding that some asthma phenotypes are not accompanied by detectable inflammation, and may not be ameliorated by classical anti-inflammatory therapy. There are growing evidences suggesting that the obesity-related asthma phenotype does not necessarily involve the classical T(H)2-dependent inflammatory process. Hormones involved in glucose homeostasis and in the pathogeneses of obesity likely directly or indirectly link obesity and asthma through inflammatory and non-inflammatory pathways. Furthermore, the endocrine regulation of the airway-related pre-ganglionic nerves likely contributes to airway hyperreactivity (AHR) in obese states. In this review, we focused our efforts on understanding the mechanism underlying obesity-related asthma by exploring the T(H)2-independent mechanisms leading to this disease.
Resumo:
OBJECTIVE: The aim of the present study was to use facial analysis to determine the effects of rapid maxillary expansion (RME) on nasal morphology in children in the stages of primary and mixed dentition, with posterior cross-bite. MATERIAL AND METHODS: Facial photographs (front view and profile) of 60 patients in the pre-expansion period, immediate post-expansion period and one year following rapid maxillary expansion with a Haas appliance were evaluated on 2 occasions by 3 experienced orthodontists independently, with a 2-week interval between evaluations. The examiners were instructed to assess nasal morphology and had no knowledge regarding the content of the study. Intraexaminer and interexaminer agreement (assessed using the Kappa statistic) was acceptable. RESULTS: From the analysis of the mode of the examiners' findings, no alterations in nasal morphology occurred regarding the following aspects: dorsum of nose, alar base, nasal width of middle third and nasal base. Alterations were only detected in the nasolabial angle in 1.64% of the patients between the pre-expansion and immediate post-expansion photographs. In 4.92% of the patients between the immediate post-expansion period and 1 year following expansion; and in 6.56% of the patients between the pre-expansion period and one year following expansion. CONCLUSIONS: RME performed on children in stages of primary and mixed dentition did not have any impact on nasal morphology, as assessed using facial analysis.
Resumo:
Background and objective: Patients with COPD can have impaired diaphragm mechanics. A new method of assessing the mobility of the diaphragm, using ultrasound, has recently been validated. This study evaluated the relationship between pulmonary function and diaphragm mobility, as well as that between respiratory muscle strength and diaphragm mobility, in COPD patients. Methods: COPD patients with pulmonary hyperinflation (n = 54) and healthy subjects (n = 20) were studied. Patients were tested for pulmonary function, maximal respiratory pressures and diaphragm mobility using ultrasound to measure the craniocaudal displacement of the left branch of the portal vein. Results: COPD patients had less diaphragm mobility than did healthy individuals (36.5 +/- 10.9 mm vs 46.3 +/- 9.5 mm, P = 0.001). In COPD patients, diaphragm mobility correlated strongly with pulmonary function parameters that quantify air trapping (RV: r = -0.60, P < 0.001; RV/TLC: r = -0.76, P < 0.001), moderately with airway obstruction (FEV1: r = 0.55, P < 0.001; airway resistance: r = -0.32, P = 0.02) and weakly with pulmonary hyperinflation (TLC: r = -0.28, P = 0.04). No relationship was observed between diaphragm mobility and respiratory muscle strength (maximal inspiratory pressure: r = -0.11, P = 0.43; maximal expiratory pressure: r = 0.03, P = 0.80). Conclusion: The results of this study suggest that the reduction in diaphragm mobility in COPD patients is mainly due to air trapping and is not influenced by respiratory muscle strength or pulmonary hyperinflation.
Resumo:
It is well established that insomniacs overestimate sleep-onset latency. Furthermore, there is evidence that brief arousals from sleep may occur more frequently in insomnia. This study examined the hypothesis that brief arousals from sleep influence the perception of sleep-onset latency. An average of four sleep onsets was obtained from each of 20 normal subjects on each of two nonconsecutive, counterbalanced, experimental nights. The experimental nights consisted of a control night (control condition) and a condition in which a moderate respiratory load was applied to increase the frequency of microarousals during sleep onset (mask condition). Subjective estimation of sleep-onset latency and indices of sleep quality were assessed by self-report inventory. Objective measures of sleep-onset latency and microarousals were assessed using polysomnography. Results showed that sleep-onset latency estimates were longer in the mask condition than in the control condition, an effect not reflected in objective sleep-stage scoring of sleep-onset latency. Furthermore, an increase in the frequency of brief arousals from sleep was detected in the mask condition, and this is a possible source for the sleep-onset latency increase perceived by the subjects. Findings are consistent with the concept of a physiological basis for sleep misperception in insomnia.
Resumo:
Background: To evaluate the cardiopulmonary effects of positive end-expiratory pressure (PEEP) equalization to intra-abdominal pressure (IAP) in an experimental model of intra-abdominal hypertension (IAH) and acute lung injury (ALI). Methods: Eight anesthetized pigs were submitted to IAH of 20 mm Hg with a carbon dioxide insufflator for 30 minutes and then submitted to lung lavage with saline and Tween (2.5%). Pressure x volume curves of the respiratory system were performed by a low flow method during IAH and ALI, and PEEP was subsequently adjusted to 27 cm center dot H(2)O for 30 minutes. Results: IAH decreases pulmonary and respiratory system static compliances and increases airway resistance, alveolar-arterial oxygen gradient, and respiratory dead space. The presence of concomitant ALI exacerbates these findings. PEEP identical to AP moderately improved oxygenation and respiratory mechanics; however, an important decline in stroke index and right ventricle ejection fraction was observed. Conclusions: Simultaneous IAH and ALI produce important impairments in the respiratory physiology. PEEP equalization to AP may improve the respiratory performance, nevertheless with a secondary hemodynamic derangement.