110 resultados para Ahmuellerella octoradiata


Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the key objectives of Deep Sea Drilling Project (DSDP) Leg 75 was to shed light on the underlying causes of Cretaceous oceanic anoxia in the South Atlantic by addressing two major hypotheses: productivity productivity-driven anoxia vs. enhanced ocean stratification leading to preservation of organic matter and black shale deposition. Here we present a detailed geochemical dataset from sediments deposited during the Cenomanian/Turonian (C/T) transition and the global oceanic anoxic event 2 (OAE 2) at DSDP Site 530A, located off-shore Namibia (southeast Angola Basin, north of Walvis Ridge). To characterise the succession of alternating black and green shales at this site and to reconstruct the evolution of their paleoenvironmental setting, we have combined data derived from investigations on bulk organic matter, biomarkers and the inorganic fraction. The location of the C/T boundary itself is biostratigraphically not well constrained due to the carbonate-poor (but organic matter-rich) facies of these sediments. The bulk d13Corg record and compound-specific d13C data, in combination with published as well as new biostratigraphic data, enabled us to locate more precisely the C/T boundary at DSDP Site 530A. The compound-specific d13C record is the first of this kind reported from C/T black shales in the South Atlantic. It is employed for paleoenvironmental reconstructions and chemostratigraphic correlation to other C/T sections in order to discuss the paleoceanographic aspects and implications of the observations at DSDP Site 530A in a broader context, e.g., with regard to the potential trigger mechanisms of OAE 2, global changes in black shale deposition and climate. On a stratigraphic level, an approximation and monitoring of the syndepositional degree of oxygen depletion within the sediments/bottom waters in comparison to the upper water column is achieved by comparing normalised concentrations of redox-sensitive trace elements with the abundance of highly source specific molecular compounds. These biomarkers are derived from photoautotrophic and simultaneously anoxygenic green sulphur bacteria (Chlorobiacea) and are interpreted as paleoindicators for events of photic zone euxinia. In contrast to a number of other OAE 2 sections that are characterised by continuous black shale sequences, DSDP Site 530A represents a highly dynamic setting where newly deposited black shales were repeatedly exposed to conditions of subtle bottom water re-oxidation, presumably leading to their progressive alteration into green shales. The frequent alternation between both facies and the related anoxic to slight oxygenated conditions can be best explained by variations in vertical extent of an oxygen minimum zone in response to changes in a highly productive western continental margin setting driven by upwelling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Five of the six sites drilled during Leg 77 of the Deep Sea Drilling Project yielded Cretaceous sediments. Two of these sites, 535 and 540, form a composite section that spans the upper Berriasian through most of the Cenomanian. Olive black marly limestones in this interval yield relatively rich, well-preserved nannofossil assemblages that allow biostratigraphic subdivision of the sequence. This composite section provides important information on the Early Cretaceous history of the Gulf of Mexico, as well as additional information on tropical Lower Cretaceous nannofossil assemblages. The post-Cenomanian nannofossil (and sedimentary) record is limited to a thin, condensed section of Santonian through lower Maestrichtian pelagic sediments at one site (538) and is absent or represented by redeposited material at the other sites. Two new genera, Perchnielsenella and Darwinilithus, are described. Two new taxa, Darwinilithus pentarhethum and Lithraphidites acutum ssp. eccentricum, are described; and two new combinations, Rhagodiscus reightonensis and Perchnielsenella stradneri, are propose.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 114 recovered nannofossil-bearing sediments from seven sites in the high latitudes of the South Atlantic Ocean. Cretaceous sections were recovered from Sites 698 and 700, located on the Northeast Georgia Rise and its lower flanks, respectively. These contain distinctive high-latitude nannofossil floras similar to those from high-latitude areas of the Northern Hemisphere. Most of the biostratigraphic datums used to date the upper Campanian to Maestrichtian interval appear to lie at approximately the same level in both hemispheres. The FAD of Nephrolithus frequens is confirmed to be diachronous with an earlier occurrence in high latitudes. The LAD of Monomarginatus primus n. sp. also appears to be diachronous with a later LAD in the high latitudes of the Southern Hemisphere. Fossiliferous Paleocene to lowermost Miocene sediments were recovered at all seven sites, from the Northeast Georgia Rise in the west to the Meteor Rise in the east. These nannofossil floras, although restricted in diversity and only poorly preserved, are sufficiently distinctive to allow the recognition of 19 zones and three subzones, which are used to date and correlate the cores recovered. Only Site 704 on the Meteor Rise yielded a substantial section of Miocene to Quaternary nannofossil-rich sediments. The nannofossil floras of this section are of very low diversity, with usually fewer than eight species present. Some stratigraphic ranges of important biostratigraphic datum species are observed to be different in the high-latitude sections from those recorded from low-latitude areas. The LAD of Reticulofenestra bisecta, when calibrated by magnetostratigraphy, appears to occur earlier in Hole 699A (within Chron C6CR) than in Hole 703A and possibly Hole 704B and in other published accounts of lower latitude sites in the South Atlantic. The FAD of Nannotetrina fulgens/N. cristata appears to occur later in Hole 702B (Chron C20R) than it does in other published accounts of lower latitude sites in the South Atlantic. Diachroneity is also suspected in the stratigraphic ranges of Chiasmolithus solitus and Chiasmolithus oamaruensis, although poor magnetostratigraphic results through the critical interval prevent confirmation of this. Differences in the relative stratigraphic ranges of lsthmolithus recurvus and Cribrocentrum coenurumlC. reticulatum at Sites 699 and 703 are noted. These possibly suggest warmer surface waters on the eastern side (Site 703) of the middle to late Eocene South Atlantic than those on the western side (Site 699). The diversities of the nannofossil floras and the presence of the warm-water genera Discoaster, Sphenolithus, Helicosphaera, and Amaurolithus reflect the changing surface water temperatures throughout the Cenozoic. Warmer periods are inferred for the late Paleocene to early middle Eocene, late middle Eocene to late Eocene, latest Oligocene to earliest Miocene, and possibly the Pliocene. Colder periods are inferred for the middle Eocene, most of the Oligocene, and the Miocene. Dramatic changes in the nannofossil floras of the Pleistocene of Site 704 are thought to reflect a rapidly changing environment. Monomarginatus primus, a new species from the Upper Cretaceous strata of Hole 700B, is described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two of five holes drilled at two separate sites during Leg 123 of the Ocean Drilling Program intersected thick and relatively complete sections of Upper Cretaceous-Paleogene nannofossiliferous sediments. Although dominated by turbidite deposition in the upper part, Hole 765C contains a thick and relatively complete Albian-Oligocene section, including a particularly thick Aptian interval, with abundant and fairly well-preserved nannofossils. Several unconformities are confidently interpreted in this section that span much of the Santonian, late Campanian, Maestrichtian, late Eocene, and early Oligocene. Hole 766A contains a thick and relatively complete Albian-lower Eocene section having generally abundant and well-preserved nannofossils. Several unconformities also have been identified in this section that span much of the Coniacian, early Campanian, Maestrichtian, and late Eocene through early Pliocene. The chronostratigraphic position and length of all these unconformities may have considerable significance for reconstructing the sedimentary history and for interpreting the paleoceanography of this region. A particularly thick section of upper Paleocene-lower Eocene sediments, including a complete record across the Paleocene/Eocene boundary, also was cored in Hole 766A that contains abundant and diverse nannofossil assemblages. Although assemblages from this section were correlated successfully using a standard low-latitude zonation, difficulties were encountered that reduced biostratigraphic resolution. Several lines of evidence suggest a mid-latitude position for Site 766 during this time, including (1) high assemblage diversity characteristic of mid-latitude zones of upwelling and (2) absence of certain ecologically controlled markers found only in low latitudes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An integrated framework of magnetostratigraphy, calcareous microfossil bio-events, cyclostratigraphy and d13C stratigraphy is established for the upper Campanian-Maastrichtian of ODP Hole 762C (Exmouth Plateau, Northwestern Australian margin). Bulk-carbonate d13C events and nannofossil bio-events have been recorded and plotted against magnetostratigraphy, and provided absolute ages using the results of the cyclostratigraphic study and the recent astronomical calibration of the Maastrichtian. Thirteen carbon-isotope events and 40 nannofossil bio-events are recognized and calibrated with cyclostratigraphy, as well as 14 previously published foraminifer events, thus constituting a solid basis for large-scale correlations. Results show that this site is characterized by a nearly continuous sedimentation from the upper Campanian to the K-Pg boundary, except for a 500 kyr gap in magnetochron C31n. Correlation of the age-calibrated d13C profile of ODP Hole 762C to the d13C profile of the Tercis les Bains section, Global Stratotype Section and Point of the Campanian-Maastrichtian boundary (CMB), allowed a precise recognition and dating of this stage boundary at 72.15 ± 0.05 Ma. This accounts for a total duration of 6.15 ± 0.05 Ma for the Maastrichtian stage. Correlation of the boundary level with northwest Germany shows that the CMB as defined at the GSSP is ~800 kyr younger than the CMB as defined by Belemnite zonation in the Boreal realm. ODP Hole 762C is the first section to bear at the same time an excellent recovery of sediments throughout the upper Campanian-Maastrichtian, a precise and well-defined magnetostratigraphy, a high-resolution record of carbon isotope events and calcareous plankton biostratigraphy, and a cyclostratigraphic study tied to the La2010a astronomical solution. This section is thus proposed as an excellent reference for the upper Campanian-Maastrichtian in the Indian Ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cores from Sites 1135, 1136, and 1138 of Ocean Drilling Program Leg 183 to the Kerguelen Plateau (KP) provide the most complete Paleocene and Eocene sections yet recovered from the southern Indian Ocean. These nannofossil-foraminifer oozes and chalks provide an opportunity to study southern high-latitude biostratigraphic and paleoceanographic events, which is the primary subject of this paper. In addition, a stable isotope profile was established across the Cretaceous/Tertiary (K/T) boundary at Site 1138. An apparently complete K/T boundary was recovered at Site 1138 in terms of assemblage succession, isotopic signature, and reworking of older (Cretaceous) nannofossil taxa. There is a significant color change, a negative carbon isotope shift, and nannofossil turnover. The placement of the boundary based on these criteria, however, is not in agreement with the available shipboard paleomagnetic stratigraphy. We await shore-based paleomagnetic study to confirm or deny those preliminary results. The Paleocene nannofossil assemblage is, in general, characteristic of the high latitudes with abundant Chiasmolithus, Prinsius, and Toweius. Placed in context with other Southern Ocean sites, the biogeography of Hornibrookina indicates the presence of some type of water mass boundary over the KP during the earliest Paleocene. This boundary disappeared by the late Paleocene, however, when there was an influx of warm-water discoasters, sphenoliths, and fasciculiths. This not only indicates that during much of the late Paleocene water temperatures were relatively equable, but preliminary floral and stable isotope analyses also indicate that a relatively complete record of the late Paleocene Thermal Maximum event was recovered at Site 1135. It was only at the beginning of the middle Eocene that water temperatures began to decline and the nannofossil assemblage became dominated by cool-water species while discoaster and sphenolith abundances and diversity were dramatically reduced. One new taxonomic combination is proposed, Heliolithus robustus Arney, Ladner, and Wise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cores from Sites 689 and 690 of Ocean Drilling Program Leg 113 provide the most continuous Paleocene and Eocene sequence yet recovered by deep sea drilling in the high latitudes of the Southern Ocean. The nannofossil-foraminifer oozes and chalks recovered from Maud Rise at 65°S in the Weddell Sea provide a unique opportunity for biostratigraphic study of extremely high southern latitude carbonate sediments. The presence of warm water index fossils such as the discoasters and species of the Tribrachiatus plexus facilitate the application of commonly used low latitude calcareous nannofossil biostratigraphic zonation schemes for the upper Paleocene and lower Eocene intervals. In the more complete section at Site 690, Okada and Bukry Zones CP1 through CP10 can be identified for the most part with the possible exception of Zone CP3. Several hiatuses are present in the sequence at Site 689 with the most notable being at the Cretaceous/Tertiary and Paleocene/Eocene boundaries. Though not extremely diverse, the assemblage of discoasters in the upper Paleocene and lower Eocene calcareous oozes is indicative of warm, relatively equable climates during that interval. A peak in discoaster diversity in uppermost Paleocene sediments (Zone CP8) corresponds to a negative shift in 5180 values. Associated coccolith assemblages are quite characteristic of high latitudes with abundant Chiasmolithus, Prinsius, and Toweius. Climatic cooling is indicated for middle Eocene sediments by assemblages that contain very abundant Reticulofenestra, lack common discoasters and sphenoliths and are much less diverse overall. Two new taxa are described, Biscutum? neocoronum n. sp. and Amithalithina sigmundii n. gen., n. sp.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 136 m of calcareous oozes recovered in Hole 810C span the interval from upper Maastrichtian to middle Pleistocene. Three major hiatuses interrupt the sequence, with the topmost part of the Maastrichtian through the entire lower Paleocene, most of the lower Eocene, and the entire middle Eocene through most of the middle Miocene missing. Severe reworking and displacement affected the lower part of the succession from the Maastrichtian through the middle Miocene. Reworking and displacement gradually decreased in the upper portion. Calcareous nannofossil biostratigraphy enabled us to calibrate precisely the nearly complete magnetic reversal sequence of the Pliocene to the late Pleistocene. Two minor hiatuses detected by calcareous nannofossils across the Pliocene/Pleistocene boundary and in the upper lower Pleistocene, respectively, resulted in shortening of the Olduvai and Jaramillo Events within the Matuyama Chron of the magnetic reversal sequence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ODP Leg 119 drilled 11 sites on the Kerguelen Plateau (southern Indian Ocean) and Prydz Bay (East Antarctica). Upper Pliocene through Quaternary sediments were recovered at Site 736 on the northern Kerguelen Plateau; calcareous nannofossils occurred in only a few samples. Over 700 m of middle Eocene through Quaternary sediments was cored at Site 737 on the northern Kerguelen Plateau, and calcareous nannofossils are abundant in the middle Eocene through the middle Miocene sediments. Nearly 500 m of sediments ranging from the lower Turanian to the Quaternary was recovered at Site 738 on the southern Kerguelen Plateau; calcareous nannofossils are abundant from the Miocene downward. Calcareous nannofossils are also abundant in the upper Eocene through Miocene section from Site 744 on the southern Kerguelen Plateau. Except for Core 119-746A-13H, the Neogene sequences drilled at deep-water Sites 745 and 746 off the southern Kerguelen Plateau are devoid of calcareous nannofossils. Occurrences of calcareous nannofossils were generally rare and sporadic at Sites 739 and 742 in Prydz Bay and suggest that the diamictite sequences recovered is as old as middle Eocene-early Oligocene age. Other sites drilled in Prydz Bay (Sites 740, 741, and 743) did not yield calcareous nannofossils. Species diversity of calcareous nannofossils was low (about a dozen) in the southern Indian Ocean in the Late Cretaceous. High-latitude nanno floral characteristics are apparent after the Cretaceous/Tertiary boundary extinctions. Cold climatic conditions limited Oligocene calcareous nannofossil assemblages to fewer than a dozen species, and extinctions of species generally were not compensated by originations of new species. Only a few species of calcareous nannofossils were found in the Miocene sequences, in which Coccolithuspelagicus and one or two species of Reticulofenestra exhibit extreme (0%-100%) fluctuations in assemblage dominance, and these fluctuations may reflect rapid fluctuations in the surface-water temperatures. Further deterioration of climate in the late Neogene essentially excluded calcareous nannoplankton from the Southern Ocean. Significantly warmer water conditions during part of the early-middle Pleistocene were inferred by a few lower-middle Pleistocene calcareous nannofossil species found on the Kerguelen Plateau. The calcareous nannofossil zonation of Roth (1978 doi:10.2973/dsdp.proc.44.134.1978) can be applied to the Upper Cretaceous section recovered at Site 738, and the zonation of Okada and Bukry (1980 doi:10.1016/0377-8398(80)90016-X) can be applied without much difficulty to the Paleocene to middle Eocene sequences from the Kerguelen Plateau. However, some conventional upper Paleogene markers are not useful for southern high latitudes, whereas a few nonconventional species events are useful for subdividing the upper Paleogene sequences. The latter species events include the first occurrence (FO) of Reticulofenestra reticulata, the FO and last occurrence (LO) of Reticulofenestra oamaruensis, the LO of Isthmolithus recurvus, and the LO of Chiasmolithus altus. As the Neogene sequences from the southern Indian Ocean contain only a few long-ranging, cold-water species, or are devoid of coccoliths, calcareous nannofossil zonations remain virtually unworkable for the Neogene in the high-latitude southern Indian Ocean as in other sectors of the Southern Ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The calcareous nannofossils of the Cenomanian/Turonian boundary interval of Sites 1258 and 1260 (Ocean Drilling Program Leg 207) have been studied in order to understand the depositional environment during Oceanic Anoxic Event 2 (OAE2) in the equatorial Atlantic. Nannofossil assemblages show a significant change in relative abundances during the positive d13Corg excursion interval. The strong increase of the high productivity indicator Zeugrhabdotus erectus and the simultaneous decrease of the oligotrophic taxa Watznaueria barnesiae and Watznaueria fossacincta are indicative of enhanced fertility. The decrease of Eprolithus floralis may be attributed to the surface-water temperature increase during OAE2, which is, however, not very significant (~2-3 °C), as suggested by published TEX86 data. It seems more likely that the decrease of E. floralis during OAE2 was evoked by the breakdown of water-column stratification, indicating it as a deep-dwelling species, which prefers stratified waters with a deep nutricline. Prediscosphaera spp. and Retecapsa ficula, which show a significant increase in relative abundances during OAE2, seem to prefer eutrophic environments, while Amphizygus brooksii and Zeugrhabdotus noeliae lower surface-water fertility. Gartnerago segmentatum, Broinsonia spp., Watznaueria biporta, and Seribiscutum gaultensis decrease in abundances during OAE2. It is not clear if they preferred an oligotrophic environment, cooler surface-waters, or if they were inhabitants of the lower photic zone. Published geochemical data suggest that enhanced fertility and higher temperatures during OAE2 may have been caused by submarine volcanic activity through the release of biolimiting micronutrients into the ocean and carbon dioxide into the atmosphere. The breakdown of water-column stratification may have increased further nutrient availability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An apparently complete Danian section was recovered at ODP Site 738 on the southern Kerguelen Plateau. Calcareous nannofossils are abundant and moderately preserved in the section. A number of taxa common in middle or low latitudes, such as Braarudosphaera, Biscutum? romeinii, Biscutum? parvulum, Cyclagelosphaera, Octolithus multiplus, and Toweius petalosus are absent at Site 738. On the other hand, a bloom of Hornibrookina occurs at Site 738 only slightly (15 cm) above the Cretaceous/Tertiary boundary as defined by the iridium peak. Species of Chiasmolithus and Prinsius are very abundant. This gives the nannofossil assemblages distinct high-latitude characteristics and suggests significant latitudinal thermal gradients in the Danian oceans. A Danian nannofossil zonation for the Antarctic region is proposed, which utilizes traditional markers and several nontraditional markers, i.e., the first occurrences of Hornibrookina, Prinsius martinii, and Chiasmolithus bidens, and the last occurrence of Hornibrookina teuriensis. Quantitative analyses of the calcareous nannofossil assemblages from Site 738 reveal four steps of rapid floral changes in the early Danian before relatively stable nannofloral conditions were reached at about 63.8 Ma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biotic effects of volcanism have long been the unknown factors in creating biotic stress, and the contribution of the Deccan volcanism to the K-T mass extinction remains largely unknown. Detailed studies of the volcanic-rich sediments of Indian Ocean Ninetyeast Ridge Sites 216 and 217 and Wharton Basin Site 212 reveal that the biotic effects of late Maastrichtian volcanism on planktic foraminifera and calcareous nannofossils are locally as severe as those of the K-T mass extinction. The biotic expressions of these high stress environments are characterized by the Lilliput effect, which includes reduced diversity by eliminating most K-strategy species, and reduction in specimen size (dwarfing), frequently to less than half their normal adult size of both r-strategy and surviving K-strategy species. In planktic foraminifera, the most extreme biotic stress results are nearly monospecific assemblages dominated by the disaster opportunist Guembelitria, similar to the aftermath of the K-T mass extinction. The first stage of improving environmental conditions results in dominance of dwarfed low oxygen tolerant Heterohelix species and the presence of a few small r-strategy species (Hedbergella, Globigerinelloides). Calcareous nannofossil assemblages show similar biotic stress signals with the dominance of Micula decussata, the disaster opportunist, and size reduction in the mean length of subordinate r-strategy species particularly in Arkhangelskiella cymbiformis and Watznaueria barnesiae. These impoverished and dwarfed late Maastrichtian assemblages appear to be the direct consequences of mantle plume volcanism and associated environmental changes, including high nutrient influx leading to eutrophic and mesotrophic waters, low oxygen in the water column and decreased watermass stratification.