Maastrichtian calcareous nannofossils of the Indian Ocean and Shatsky Rise


Autoria(s): Tantawy, Abdel Aziz A; Keller, Gerta; Pardo, Alfonso
Cobertura

MEDIAN LATITUDE: 7.395217 * MEDIAN LONGITUDE: 115.849253 * SOUTH-BOUND LATITUDE: -19.189000 * WEST-BOUND LONGITUDE: 90.538800 * NORTH-BOUND LATITUDE: 32.448450 * EAST-BOUND LONGITUDE: 157.711660 * DATE/TIME START: 1972-01-27T00:00:00 * DATE/TIME END: 2001-10-01T23:30:00

Data(s)

29/03/2009

Resumo

The biotic effects of volcanism have long been the unknown factors in creating biotic stress, and the contribution of the Deccan volcanism to the K-T mass extinction remains largely unknown. Detailed studies of the volcanic-rich sediments of Indian Ocean Ninetyeast Ridge Sites 216 and 217 and Wharton Basin Site 212 reveal that the biotic effects of late Maastrichtian volcanism on planktic foraminifera and calcareous nannofossils are locally as severe as those of the K-T mass extinction. The biotic expressions of these high stress environments are characterized by the Lilliput effect, which includes reduced diversity by eliminating most K-strategy species, and reduction in specimen size (dwarfing), frequently to less than half their normal adult size of both r-strategy and surviving K-strategy species. In planktic foraminifera, the most extreme biotic stress results are nearly monospecific assemblages dominated by the disaster opportunist Guembelitria, similar to the aftermath of the K-T mass extinction. The first stage of improving environmental conditions results in dominance of dwarfed low oxygen tolerant Heterohelix species and the presence of a few small r-strategy species (Hedbergella, Globigerinelloides). Calcareous nannofossil assemblages show similar biotic stress signals with the dominance of Micula decussata, the disaster opportunist, and size reduction in the mean length of subordinate r-strategy species particularly in Arkhangelskiella cymbiformis and Watznaueria barnesiae. These impoverished and dwarfed late Maastrichtian assemblages appear to be the direct consequences of mantle plume volcanism and associated environmental changes, including high nutrient influx leading to eutrophic and mesotrophic waters, low oxygen in the water column and decreased watermass stratification.

Formato

application/zip, 3 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.778414

doi:10.1594/PANGAEA.778414

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Tantawy, Abdel Aziz A; Keller, Gerta; Pardo, Alfonso (2009): Late Maastrichtian Volcanism in the Indian Ocean: Effects on Calcareous Nannofossils and Planktic Foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 284(1-2), 63-87, doi:10.1016/j.palaeo.2009.08.025

Palavras-Chave #198-1212B; 22-212; 22-217; A. cymbiformis; A. octoradiata; A. regularis; Ahmuellerella octoradiata; Ahmuellerella regularis; Arkhangelskiella cymbiformis; B. constans; B. ellipticum; B. magnum; B. parca constricta; B. signata; Biscutum constans; Biscutum ellipticum; Biscutum magnum; Biscutum spp.; Broinsonia parca constricta; Broinsonia signata; C. aculeus; C. amphipons; C. conicus; C. daniae; C. ehrenbergii; C. gallica; C. kamptneri; C. nudus; C. obscurus; C. reinhardtii; C. schizobrachiatus; C. serratus; Calculites obscurus; Ceratolithoides aculeus; Ceratolithoides kamptneri; Ceratolithoides sp.; Chiastozygus amphipons; Cretarhabdus conicus; Cretarhabdus schizobrachiatus; Cribrocorona gallica; Cribrosphaerella daniae; Cribrosphaerella ehrenbergii; Cyclagelosphaera reinhardtii; Cylindralithus nudus; Cylindralithus serratus; Deep Sea Drilling Project; DRILL; Drilling/drill rig; DSDP; E. parallelus; E. turriseiffelii; Eiffellithus parallelus; Eiffellithus turriseiffelii; G. obliquum; Gartnerago obliquum; Glomar Challenger; H. anceps; Helicolithus anceps; including B. constans; including undosus; Indian Ocean//BASIN; Indian Ocean//RIDGE; Joides Resolution; K. magnificus; Kamptnerius magnificus; L. carniolensis; L. cayeuxii; L. praequadratus; L. quadratus; Lapideacassis sp.; Leg198; Leg22; Lithraphidites carniolensis; Lithraphidites praequadratus; Lithraphidites quadratus; Lucianorhabdus cayeuxii; M. decoratus; M. decussata; M. inversus; M. murus; M. pemmatoidea; M. praemurus; M. prinsii; M. swastica; Manivitella pemmatoidea; Markalius inversus; Microrhabdulus decoratus; Micula decussata; Micula murus; Micula praemurus; Micula prinsii; Micula swastica; N. frequens; N. ruegensis; Nannofossils; Nannofossil zone; Nannos; Nannos zone; Nephrolithus frequens; Nephrolithus ruegensis; North Pacific Ocean; O. multiplus; Ocean Drilling Program; Octolithus multiplus; ODP; ODP sample designation; P. copulatus; P. cretacea; P. decorus; P. fenestratus; P. grandis; P. majungae; P. microrhabdulina; P. ponticulata; P. quadrata; P. spinosa; P. stoveri; Perissocyclus fenestratus; Petrarhabdus copulatus; Podorhabdus decorus; Prediscosphaera cretacea; Prediscosphaera grandis; Prediscosphaera majungae; Prediscosphaera microrhabdulina; Prediscosphaera ponticulata; Prediscosphaera spinosa; Prediscosphaera stoveri; Pseudomicula quadrata; R. angustiforata; R. angustus; R. crenulata; R. ficula; R. indistinctus; R. levis; R. splendens; R. surirella; Reinhardtites levis; Retecapsa angustiforata; Retecapsa crenulata; Retecapsa ficula; Retecapsa surirella; Rhagodiscus angustus; Rhagodiscus indistinctus; Rhagodiscus splendens; Rucinolithus sp.; S; Sample code/label; SampleLabel; Smear slide analysis; species per field of view; Species richness; Staurolithites sp.; T. minimus; T. orionatus; Thoracosphaera spp.; total counts; Tranolithus minimus; Tranolithus orionatus; U. gothicus; U. trifidus; Uniplanarius gothicus; Uniplanarius trifidus; W. barnesiae; W. fossacincta; W. quadriradiata; Watznaueria barnesiae; Watznaueria fossacincta; Watznaueria quadriradiata; Z. bicrescenticus; Z. embergeri; Z. spiralis; Zeugrhabdotus bicrescenticus; Zeugrhabdotus embergeri; Zeugrhabdotus spiralis
Tipo

Dataset