965 resultados para Affinity tag


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficient removal of a N- or C-terminal purification tag from a fusion protein is necessary to obtain a protein in a pure and active form, ready for use in human or animal medicine. Current techniques based on enzymatic cleavage are expensive and result in the presence of additional amino acids at either end of the proteins, as well as contaminating proteases in the preparation. Here we evaluate an alternative method to the one-step affinity/protease purification process for large-scale purification. It is based upon the cyanogen bromide (CNBr) cleavage at a single methionine placed in between a histidine tag and a Plasmodium falciparum antigen. The C-terminal segment of the circumsporozoite polypeptide was expressed as a fusion protein with a histidine tag in Escherichia coli purified by Ni-NAT agarose column chromatography and subsequently cleaved by CNBr to obtain a polypeptide without any extraneous amino acids derived from the cleavage site or from the affinity purification tag. Thus, a recombinant protein is produced without the need for further purification, demonstrating that CNBr cleavage is a precise, efficient, and low-cost alternative to enzymatic digestion, and can be applied to large-scale preparations of recombinant proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do Grau de Mestre em Biotecnologia, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação para a Ciência e Tecnologia - SFRH/BD/48804/2008 and the project PTDC/BI/65383/2006 assigned to Prof. Cecíla Roque and also to Associate Laboratory REQUIMTE (Pest-C/EQB/LA0006/2011)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The fusion of a protein of interest to a large-affinity tag, such as the maltose-binding protein (MBP), thioredoxin (TRX), or glutathione-S-transferase (GST), can be advantageous in terms of increased expression, enhanced solubility, protection from proteolysis, improved folding, and protein purification via affinity chromatography. Unfortunately, crystal growth is hindered by the conformational heterogeneity induced by the fusion tag, requiring that the tag is removed by a potentially problematic cleavage step. The first three crystal structures of fusion proteins with large-affinity tags have been reported recently. All three structures used a novel strategy to rigidly fuse the protein of interest to MBP via a short three- to five-amino acid spacer. This strategy has the potential to aid structure determination of proteins that present particular experimental challenges and are not conducive to more conventional crystallization strategies (e.g., membrane proteins). Structural genomics initiatives may also benefit from this approach as a way to crystallize problematic proteins of significant interest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report here the construction of a vector derived from pET3-His and pRSET plasmids for the expression and purification of recombinant proteins in Escherichia coli based on T7 phage RNA polymerase. The resulting pAE plasmid combined the advantages of both vectors: small size (pRSET), expression of a short 6XHis tag at N-terminus (pET3-His) and a high copy number of plasmid (pRSET). The small size of the vector (2.8 kb) and the high copy number/cell (200-250 copies) facilitate the subcloning and sequencing procedures when compared to the pET system (pET3-His, 4.6 kb and 40-50 copies) and also result in high level expression of recombinant proteins (20 mg purified protein/liter of culture). In addition, the vector pAE enables the expression of a fusion protein with a minimal amino-terminal hexa-histidine affinity tag (a tag of 9 amino acids using XhoI restriction enzyme for the 5'cloning site) as in the case of pET3-His plasmid and in contrast to proteins expressed by pRSET plasmids (a tag of 36 amino acids using BamHI restriction enzyme for the 5'cloning site). Thus, although proteins expressed by pRSET plasmids also have a hexa-histidine tag, the fusion peptide is much longer and may represent a problem for some recombinant proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Das Enterobakterium Escherichia coli sowie das Bodenbakterium Bacillus subtilis können C4-Dicarbonsäuren als aerobe Kohlenstoffquelle zur Energiekonservierung nutzen. Die Regulation des C4-Dicarboxylatstoffwechsels erfolgt in E. coli und B. subtilis durch das Zweikomponentensystem DcuSREc bzw. DctSRBs, bestehend aus einer Sensorkinase und einem Responseregulator. Diese kontrollieren die Expression des C4-Dicarboxylat-Transporters DctA. Der Sensor DcuSEc benötigt für seine Funktion im aeroben Stoffwechsel den Transporter DctA als Cosensor. Für das DctSRBs-System gibt es Hinweise aus genetischen Untersuchungen, dass DctSBs das Bindeprotein DctBBs und möglicherweise auch DctABs als Cosensoren für seine Funktion benötigt. In dieser Arbeit sollte ein direkter Nachweis geführt werden, ob DctBBs und DctABs gemeinsam oder nur jeweils eine der Komponenten als Cosensoren für DctSBs fungieren. Sowohl für DctBBs als auch für DctABs wurde eine direkte Protein-Protein-Interaktion mit DctSBs durch zwei in vivo Interaktionsmethoden nachgewiesen. Beide Methoden beruhen auf der Co-Reinigung der Interaktionspartner mittels Affinitätschromatographie und werden je nach Affinitätssäule als mSPINE oder mHPINE (Membrane Strep/His-Protein INteraction Experiment) bezeichnet. Die Interaktion von DctSBs mit DctBBs wurde zusätzlich über ein bakterielles Two-Hybrid System nachgewiesen. Nach Coexpression mit DctSBs interagieren DctABs und DctBBs in mSPINE-Tests gleichzeitig mit der Sensorkinase. DctSBs bildet somit eine sensorische DctS/DctA/DctB-Einheit in B. subtilis und das Bindeprotein DctBBs agiert nur als Cosensor, nicht aber als Transport-Bindeprotein. Eine direkte Interaktion zwischen dem Transporter DctABs und dem Bindeprotein DctBBs besteht nicht. Transportmessungen belegen, dass der DctA-vermittelte Transport von [14C]-Succinat unabhängig ist von DctBBs. Außerdem wurde untersucht, ob Zweikomponentensysteme aus anderen Bakteriengruppen nach einem ähnlichen Schema wie DcuSREc bzw. DctSRBs aufgebaut sind. Das thermophile Bakterium Geobacillus kaustophilus verfügt über ein DctSR-System, welches auf genetischer Ebene mit einem Transporter des DctA-Typs und einem DctB-Bindeprotein geclustert vorliegt. Die Sensorkinase DctSGk wurde in E. coli heterolog exprimiert und gereinigt. Diese zeigt in einer E. coli DcuS-Insertionsmutanten Komplementation der DcuS-Funktion und besitzt dabei Spezifität für die C4-Dicarbonsäuren Malat, Fumarat, L-Tartrat und Succinat sowie für die C6-Tricarbonsäure Citrat. In Liposomen rekonstituiertes DctSGk zeigt Autokinase-Aktivität nach Zugabe von [γ-33P]-ATP. Der KD-Wert für [γ-33P]-ATP der Kinasedomäne von DctSGk liegt bei 43 μM, die Affinität für ATP ist damit etwa 10-fach höher als in DcuSEc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Post-replication DNA mismatch repair plays crucial roles in mutation avoidance and maintenance of chromosome stability in both prokaryotes and eukaryotes. In humans, deficiency in this repair system leads to a predisposition for certain cancers. The biochemistry of this repair system has been best studied in a model bacterium Escherichia coli. In this thesis, regulation of expression of mutS, mutL and mutH genes, whose products mediate methyl-directed mismatch (MDM) repair in E. coli, is investigated. One-step affinity purification schemes were developed to purify E. coli MutS, MutL and MutH proteins fused to a His-6-affinity tag. His-6-MutS exhibited the same mismatch binding activity and specificity as the native MutS protein. Purified His-6-MutS, -MutL and -MutH proteins were used to develop quantitative Western blotting assays for amounts of MutS, MuL and MutH proteins under various conditions. It was found that the three proteins were present in relatively low amounts in exponentially growing cells and MutS and MutH were diminished in stationary-phase cells. Further studies indicated that the drop in the amounts of MutS and MutH proteins in stationary-phase cells was mediated through RpoS, a key global regulator of stationary-phase transition. In both exponential- and stationary-phase cells, MutS amount was also negatively regulated by the Hfq (HF-I) global regulator, which is required for RpoS translation, through an RpoS-independent mechanism. $\beta$-galactosidase assays of mutS-lacZ operon and gene fusions suggested that hfq regulates mutS posttranscriptionally, and RNase T2 protection assays revealed that Hfq destabilizes mutS transcripts in exponentially growing cells. To study the relation between regulation of MDM repair and mutagenesis, amounts of MutS, MutL and MutH were measured in starved cells undergoing adaptive mutagenesis. It was found that MutS amount dropped drastically, MutH amount dropped slightly, whereas MutL amount remained essentially constant in starved cells. Overexpression of MutL did not reverse the drop in the amounts of MutS or MutH protein. These results ruled out several explanations for a phenomenon in which overexpression of MutL, but not MutS, reversed adaptive mutagenesis. The findings further suggested that functional MutL is limiting during adaptive mutagenesis. The implications of regulation of the MDM repair are discussed in the context of mutagenesis, pathogenesis and tumorigenesis. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two regions in the 3$\prime$ domain of 16S rRNA (the RNA of the small ribosomal subunit) have been implicated in decoding of termination codons. Using segment-directed PCR random mutagenesis, I isolated 33 translational suppressor mutations in the 3$\prime$ domain of 16S rRNA. Characterization of the mutations by both genetic and biochemical methods indicated that some of the mutations are defective in UGA-specific peptide chain termination and that others may be defective in peptide chain termination at all termination codons. The studies of the mutations at an internal loop in the non-conserved region of helix 44 also indicated that this structure, in a non-conserved region of 16S rRNA, is involved in both peptide chain termination and assembly of 16S rRNA.^ With a suppressible trpA UAG nonsense mutation, a spontaneously arising translational suppressor mutation was isolated in the rrnB operon cloned into a pBR322-derived plasmid. The mutation caused suppression of UAG at two codon positions in trpA but did not suppress UAA or UGA mutations at the same trpA positions. The specificity of the rRNA suppressor mutation suggests that it may cause a defect in UAG-specific peptide chain termination. The mutation is a single nucleotide deletion (G2484$\Delta$) in helix 89 of 23S rRNA (the large RNA of the large ribosomal subunit). The result indicates a functional interaction between two regions of 23S rRNA. Furthermore, it provides suggestive in vivo evidence for the involvement of the peptidyl-transferase center of 23S rRNA in peptide chain termination. The $\Delta$2484 and A1093/$\Delta$2484 (double) mutations were also observed to alter the decoding specificity of the suppressor tRNA lysT(U70), which has a mutation in its acceptor stem. That result suggests that there is an interaction between the stem-loop region of helix 89 of 23S rRNA and the acceptor stem of tRNA during decoding and that the interaction is important for the decoding specificity of tRNA.^ Using gene manipulation procedures, I have constructed a new expression vector to express and purify the cellular protein factors required for a recently developed, realistic in vitro termination assay. The gene for each protein was cloned into the newly constructed vector in such a way that expression yielded a protein with an N-terminal affinity tag, for specific, rapid purification. The amino terminus was engineered so that, after purification, the unwanted N-terminal tag can be completely removed from the protein by thrombin cleavage, yielding a natural amino acid sequence for each protein. I have cloned the genes for EF-G and all three release factors into this new expression vector and the genes for all the other protein factors into a pCAL-n expression vector. These constructs will allow our laboratory group to quickly and inexpensively purify all the protein factors needed for the new in vitro termination assay. (Abstract shortened by UMI.) ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chrysanthemyl diphosphate synthase (CPPase) catalyzes the condensation of two molecules of dimethylallyl diphosphate to produce chrysanthemyl diphosphate (CPP), a monoterpene with a non-head-to-tail or irregular c1′-2-3 linkage between isoprenoid units. Irregular monoterpenes are common in Chrysanthemum cinerariaefolium and related members of the Asteraceae family. In C. cinerariaefolium, CPP is an intermediate in the biosynthesis of the pyrethrin ester insecticides. CPPase was purified from immature chrysanthemum flowers, and the N terminus of the protein was sequenced. A C. cinerariaefolium λ cDNA library was screened by using degenerate oligonucleotide probes based on the amino acid sequence to identify a CPPase clone that encoded a 45-kDa preprotein. The first 50 aa of the ORF constitute a putative plastidial targeting sequence. Recombinant CPPase bearing an N-terminal polyhistidine affinity tag in place of the targeting sequence was purified to homogeneity from an overproducing Escherichia coli strain by Ni2+ chromatography. Incubation of recombinant CPPase with dimethylallyl diphosphate produced CPP. The diphosphate ester was hydrolyzed by alkaline phosphatase, and the resulting monoterpene alcohol was analyzed by GC/MS to confirm its structure. The amino acid sequence of CPPase aligns closely with that of the chain elongation prenyltransferase farnesyl diphosphate synthase rather than squalene synthase or phytoene synthase, which catalyze c1′-2-3 cyclopropanation reactions similar to the CPPase reaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dr. Kenneth Murray, Ph.D. Assistant Professor of Biology Ribonuclease P (RNase P) is an essential and ubiquitous ribonucleoprotein enzyme primarily responsible for cleaving 5' leader sequences during tRNA maturation. RNase P comprises one essential RNA, and one protein subunit in eubacteria, five proteins in archaea, and ten in humans. Due to its homology to human RNase P, its higher stability, and simpler structure; extensive studies have been conducted utilizing the enzyme from the archaeal hyperthermophile, Pyrococcus furious (Pfu). Previous studies identified only four protein subunits associated with the archaeal RNase P. This fourprotein reconstituted particle, however, had an optimal temperature of 55°C, compared to the optimal 70°C of the wild type RNase P. Additional probing of the organism's genome database revealed a fifth RNase P protein subunit, RPP38. To facilitate further investigations of Pfu RNase complexes, we sought to develop a protocol for the purification ofRPP38. Our results, presented herein, represent the first known expression.purification protocol developed for RPP38. Briefly, we synthesized an N-terminal6x-His RPP38 fusion construct, reengineered to contain a Tobacco Etch Virus (TEV) protease cleavage site. Purification was achieved via immobilized metal affinity chromatography and reversed phase high performance liquid chromatography. Following purification the 6X-His affinity tag was removed via TEV cleavage, thus regenerating the native RPP38 protein. Purity and identity of RPP38 were confirmed by sodium dodecylsulfate - polyacrylamide gel electrophoresis and mass spectrometry, respectively. Our work is expected to contribute to our understanding ofRNase P function and tRNA maturation by providing an efficient, facile technique to express and purify Pfu RNase protein RPP38 as a means to facilitate structural and functional analyses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel multiple affinity purification (MAFT) or tandem affinity purification (TAP) tag has been constructed. It consists of the calmodulin binding peptide, six histidine residues, and three copies of the hemagglutinin epitope. This ‘CHH’ MAFT tag allows two or three consecutive purification steps, giving high purity. Active Clb2–Cdc28 kinase complex was purified from yeast cells after inserting the CHH tag into Clb2. Associated proteins were identified using mass spectrometry. These included the known associated proteins Cdc28, Sic1 and Cks1. Several other proteins were found including the 70 kDa chaperone, Ssa1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MHC-peptide tetramers have become essential tools for T-cell analysis, but few MHC class II tetramers incorporating peptides from human tumor and self-antigens have been developed. Among limiting factors are the high polymorphism of class II molecules and the low binding capacity of the peptides. Here, we report the generation of molecularly defined tetramers using His-tagged peptides and isolation of folded MHC/peptide monomers by affinity purification. Using this strategy we generated tetramers of DR52b (DRB3*0202), an allele expressed by approximately half of Caucasians, incorporating an epitope from the tumor antigen NY-ESO-1. Molecularly defined tetramers avidly and stably bound to specific CD4(+) T cells with negligible background on nonspecific cells. Using molecularly defined DR52b/NY-ESO-1 tetramers, we could demonstrate that in DR52b(+) cancer patients immunized with a recombinant NY-ESO-1 vaccine, vaccine-induced tetramer-positive cells represent ex vivo in average 1:5,000 circulating CD4(+) T cells, include central and transitional memory polyfunctional populations, and do not include CD4(+)CD25(+)CD127(-) regulatory T cells. This approach may significantly accelerate the development of reliable MHC class II tetramers to monitor immune responses to tumor and self-antigens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a generic method for the site-specific attachment of lathanide complexes to proteins through a disulfide bond. The method is demonstrated by the attachment of a lanthanide-binding peptide tag to the single cysteine residue present in the N-terminal DNA-binding domain of the Echerichia coli arginine repressor. Complexes with Y3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+ and Yb3+ ions were formed and analysed by NMR spectroscopy. Large pseudocontact shifts and residual dipolar couplings were induced by the lanthanide-binding tag in the protein NMR spectrum, a result indicating that the tag was rigidly attached to the protein. The axial components of the magnetic susceptibility anisostropy tensors determined for the different lanthanide ions were similarly but not identically oriented. A single tag with a single protein attachment site can provide different pseudocontact shifts from different magnetic susceptibility tensors and thus provide valuable nondegenerate long-range structure information in the determination of 3D protein structures by NMR spectroscopy.