Monitoring of NY-ESO-1 specific CD4+ T cells using molecularly defined MHC class II/His-tag-peptide tetramers.


Autoria(s): Ayyoub M.; Dojcinovic D.; Pignon P.; Raimbaud I.; Schmidt J.; Luescher I.; Valmori D.
Data(s)

2010

Resumo

MHC-peptide tetramers have become essential tools for T-cell analysis, but few MHC class II tetramers incorporating peptides from human tumor and self-antigens have been developed. Among limiting factors are the high polymorphism of class II molecules and the low binding capacity of the peptides. Here, we report the generation of molecularly defined tetramers using His-tagged peptides and isolation of folded MHC/peptide monomers by affinity purification. Using this strategy we generated tetramers of DR52b (DRB3*0202), an allele expressed by approximately half of Caucasians, incorporating an epitope from the tumor antigen NY-ESO-1. Molecularly defined tetramers avidly and stably bound to specific CD4(+) T cells with negligible background on nonspecific cells. Using molecularly defined DR52b/NY-ESO-1 tetramers, we could demonstrate that in DR52b(+) cancer patients immunized with a recombinant NY-ESO-1 vaccine, vaccine-induced tetramer-positive cells represent ex vivo in average 1:5,000 circulating CD4(+) T cells, include central and transitional memory polyfunctional populations, and do not include CD4(+)CD25(+)CD127(-) regulatory T cells. This approach may significantly accelerate the development of reliable MHC class II tetramers to monitor immune responses to tumor and self-antigens.

Identificador

http://serval.unil.ch/?id=serval:BIB_79559C791E2B

isbn:1091-6490[electronic], 0027-8424[linking]

pmid:20368442

doi:10.1073/pnas.1001322107

isiid:000276892300060

Idioma(s)

en

Fonte

Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 16, pp. 7437-7442

Palavras-Chave #Alleles; Antigens/chemistry; Antigens, Neoplasm/biosynthesis; CD4-Positive T-Lymphocytes/metabolism; Epitopes/chemistry; Flow Cytometry/methods; Gene Expression Regulation, Neoplastic; HLA-DR Antigens/chemistry; Histocompatibility Antigens Class II/immunology; Humans; Interleukin-2 Receptor alpha Subunit/biosynthesis; Membrane Proteins/biosynthesis; Neoplasms/blood; Neoplasms/immunology; Peptides/chemistry; Phenotype; Recombinant Proteins/chemistry
Tipo

info:eu-repo/semantics/article

article