955 resultados para Accelerated aging test


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O crambe é uma cultura promissora para produção de biodiesel, principalmente pelo alto conteúdo de óleo de suas sementes. No entanto, não há metodologias estabelecidas para avaliar a qualidade fisiológica das sementes desta espécie e lotes não podem ser comparados, especialmente por testes de vigor, como o de envelhecimento acelerado. O objetivo da presente pesquisa foi avaliar o efeito da alta temperatura e do período de exposição durante o teste de envelhecimento acelerado na qualidade fisiológica e atividade enzimática de sementes de crambe. Dois lotes de sementes de crambe, cultivar Brilhante, foram analisados por meio dos testes de teor de água, massa de 1.000 sementes, germinação, primeira contagem, condutividade elétrica, atividade enzimática (peroxidase e superóxido dismutase) e comprimento de plântulas. As avaliações foram conduzidas antes e após o envelhecimento acelerado, que foram testadas diferentes temperaturas (38, 40 e 42ºC) e períodos de exposição (24, 48 e 72h). O delineamento experimental foi o inteiramente casualizado com quatro repetições. Os dados foram submetidos à análise de variância e as médias foram comparadas pelo teste de Tukey (p < 0.05). O teste de Dunnet (p < 0.05) foi utilizado para comparar os valores da testemunha (antes do envelhecimento acelerado) com cada valor médio individualmente. O teste de correlação linear simples também foi aplicado. Conclui-se que a interação temperatura x período de exposição afeta a qualidade fisiológica das sementes e a atividade enzimática e que as melhores condições durante o teste de envelhecimento acelerado são dependentes do genótipo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrated solar power systems are expected to be sited in desert locations where the direct normal irradiation is above 1800 kWh/m2.year. These systems include large solar collector assemblies, which account for a significant share of the investment cost. Solarreflectors are the main components of these solar collector assemblies and dust/sand storms may affect their reflectance properties, either by soiling or by surface abrasion. While soiling can be reverted by cleaning, surface abrasion is a non reversible degradation.The aim of this project was to study the accelerated aging of second surface silvered thickglass solar reflectors under simulated sandstorm conditions and develop a multi-parametric model which relates the specular reflectance loss to dust/sand storm parameters: wind velocity, dust concentration and time of exposure. This project focused on the degradation caused by surface abrasion.Sandstorm conditions were simulated in a prototype environmental test chamber. Material samples (6cm x 6cm) were exposed to Arizona coarse test dust. The dust stream impactedthese material samples at a perpendicular angle. Both wind velocity and dust concentrationwere maintained at a stable level for each accelerated aging test. The total exposure time in the test chamber was limited to 1 hour. Each accelerated aging test was interrupted every 4 minutes to measure the specular reflectance of the material sample after cleaning.The accelerated aging test campaign had to be aborted prematurely due to a contamination of the dust concentration sensor. A robust multi-parametric degradation model could thus not be derived. The experimental data showed that the specular reflectance loss decreasedeither linearly or exponentially with exposure time, so that a degradation rate could be defined as a single modeling parameter. A correlation should be derived to relate this degradation rate to control parameters such as wind velocity and dust/sand concentration.The sandstorm chamber design would have to be updated before performing further accelerated aging test campaigns. The design upgrade should improve both the reliability of the test equipment and the repeatability of accelerated aging tests. An outdoor exposure test campaign should be launched in deserts to learn more about the intensity, frequencyand duration of dust/sand storms. This campaign would also serve to correlate the results of outdoor exposure tests with accelerated exposure tests in order to develop a robust service lifetime prediction model for different types of solar reflector materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to adapt the methodology of the accelerated aging and electrical conductivity tests for determination of physiological potential in crambe seeds. Six seed lots of crambe (cv. FMS Brilhante) were subjected to determination of moisture content, germination test, first count germination, emergence, and emergence speed index. For the accelerated aging test, the traditional methodology was used with water, and with a saturated potassium chloride and sodium chloride solution in three periods of exposure (24, 48, and 72 hours) at 41 degrees C; the electrical conductivity test was performed with four pre-soaking treatments (0, 2, 4, and 8 hours) and four soaking periods (4, 8, 16, and 24 hours) at 25 degrees C. The accelerated aging test with water for 72 hours and the electrical conductivity test with 2 hours of pre-soaking and assessment after 16 hours were effective for classification of the crambe seed lots in regard to physiological quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Informações sobre a relação entre resultados de testes de vigor conduzidos em laboratório e da emergência de plântulas em campo são fundamentais para a tomada de decisões pelos produtores de sementes. O presente trabalho teve por objetivo verificar a associação entre os resultados do teste de envelhecimento acelerado e a emergência de plântulas de soja [Glycine max (L.) Merrill] em campo, em diferentes safras agrícolas e épocas de semeadura. Assim, foram efetuadas as seguintes avaliações: determinação do grau de umidade das sementes; testes de germinação, de envelhecimento acelerado e de condutividade elétrica, bem como emergência de plântulas em campo. A estimativa mais precisa do desempenho das plântulas em campo foi verificada numa faixa de valores de envelhecimento acelerado > 90%, estimando emergência em campo superior a 80% (r² = 0,90). O teste de envelhecimento acelerado permitiu avaliar a emergência de plântulas de soja em campo. No entanto, à medida que as condições ambientais do local de semeadura foram desviando-se das mais adequadas, a eficiência decresceu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of this study was to evaluate the color stability of MDX4-4210 maxillofacial elastomer with opacifier addition submitted to chemical disinfection and accelerated aging.Materials and Methods: Ninety specimens were obtained from Silastic MDX4-4210 silicone. The specimens were divided into three groups (n = 30): Group I: colorless, Group II: barium sulfate opacifier, Group III: titanium dioxide opacifier. Specimens of each group (n = 10) were disinfected with effervescent tablets, neutral soap, or 4% chlorhexidine gluconate. Disinfection was conducted three times a week for 2 months. Afterward, the specimens were submitted to different periods of accelerated aging. Color evaluation was carried out after 60 days (disinfection period) and after 252, 504, and 1008 hours of accelerated aging, using a reflection spectrophotometer. Color alterations were calculated by the CIE L*a*b* system. Data were analyzed by three-way ANOVA and Tukey test (alpha = 0.05).Results: Group II exhibited the lowest color change, whereas Group III the highest (p < 0.05), regardless of the chemical disinfection and accelerated aging periods.Conclusion: Opacifier addition, chemical disinfection, and accelerated aging procedures affected the color stability of the maxillofacial silicone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The failure of facial prostheses is caused by limitations in their flexibility and durability. Therefore, we evaluated the effects of disinfection and aging on Shore A hardness and deterioration of a facial silicone with different pigmentations. Twenty samples with addition of each pigment (ceramic (C), make-up (M)) and without pigment (L) were made. For each pigment type and no pigment, 10 samples were subjected to two types of disinfectant solution (soap (S) and Efferdent (E)), totaling sixty samples. The specimens were disinfected three times per week for 60 days, and subjected to accelerated aging for 1008 h. The hardness of the facial silicone was measured with a durometer, and its deterioration was evaluated by obtaining the weight difference over time. Both the hardness and weight of the samples were measured at baseline, after chemical disinfection, and periodically during accelerated aging (252, 504, and 1008 h). Deterioration was calculated during the periods between baseline and chemical disinfection, and between baseline and each aging period. The results were analyzed using three-way repeated measures ANOVA and the Tukey's HSD Post-hoc test (alpha = 0.05). Specifically, samples containing pigment exhibited significantly higher hardness and deterioration values than those lacking pigment (P < 0.05). In addition, period of time (disinfection and accelerated aging) statistically increased the hardness and deterioration values of the silicone (P < 0.05). It can be concluded that both pigment and time statistically affected the hardness and deterioration of the silicone elastomer. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the greatest challenges faced by buccomaxillofacial prosthetists is to reproduce the patient's exact skin color and provide adequate esthetics. To reach this objective, professionals must use materials with easy characterization and that maintain color over long periods of time. The objective of this study was, thus, to evaluate the color stability of two types of silicones, Silastic 732 and Silastic MDX4-4210. Twenty-four test specimens were made from each type of silicone and were divided into a colorless group and groups intrinsically pigmented with ceramics, cosmetics or iron oxide. The specimens were submitted to an accelerated system of aging for non-metallic materials. Readings were carried out initially and after periods corresponding to 163, 351, 692 and 1,000 hours of aging, using a reflection spectrophotometer analysis, and color alterations were calculated by the CIE L*a*b* system. The data were submitted to variance analysis and Tukey's test at a 5% level of probability. The results demonstrated that, irrespective of the period of time analyzed, all the materials underwent some type of chromatic alteration (ΔE > 0). The test specimens made with Silastic 732 and MDX4-4210, without pigmentation, presented the lowest color alteration values after 1,000 hours of aging. Of the pigments, ceramic presented the lowest color alteration values and cosmetic powder presented the highest values. Thus, it may be concluded that the materials without the incorporation of pigments presented similar color alteration values, and did not differ statistically. The cosmetic powder used in this study was the pigment that most altered the color of the test specimens. © 2009 Sociedade Brasileira de Pesquisa Odontológica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the effects of disinfection and aging on the hardness of silicones containing opacifiers and intended for use in facial prosthetics. A total of 90 samples were produced using a cylindrical metal mold 3 mm in height and 30 mm in diameter. The samples were fabricated from Silastic MDX 4-4210 silicone in three groups: GI contained no opacifier, GII contained barium sulfate (Ba), and GIII contained titanium dioxide (Ti). The samples were disinfected using effervescent tablets (Ef), neutral soap (Ns), or 4% chlorhexidine (Cl) 3 times a week for 60 days. After this period the samples underwent 1,008 hours of accelerated aging. The hardness was measured using a durometer immediately following the disinfection period and after 252, 504, and 1,008 hours of aging. The data were statistically analyzed using 3-way ANOVA and the Tukey test (p < .05). The GIII group exhibited the greatest variation in hardness regardless of elapsed time. All groups displayed greater hardness after 1,008 hours of accelerated aging independent of disinfectant type. All of the hardness values were within the clinically acceptable range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outdoor bronzes exposed to the environment form naturally a layer called patina, which may be able to protect the metallic substrate. However, since the last century, with the appearance of acid rains, a strong change in the nature and properties of the copper based patinas occurred [1]. Studies and general observations have established that bronze corrosion patinas created by acid rain are not only disfiguring in terms of loss of detail and homogeneity, but are also unstable [2]. The unstable patina is partially leached away by rainwater. This leaching is represented by green streaking on bronze monuments [3]. Because of the instability of the patina, conservation techniques are usually required. On a bronze object exposed to the outdoor environment, there are different actions of the rainfall and other atmospheric agents as a function of the monument shape. In fact, we recognize sheltered and unsheltered areas as regards exposure to rainwater [4]. As a consequence of these different actions, two main patina types are formed on monuments exposed to the outdoor environment. These patinas have different electrochemical, morphological and compositional characteristics [1]. In the case of sheltered areas, the patina contains mainly copper products, stratified above a layer strongly enriched in insoluble Sn oxides, located at the interface with the uncorroded metal. Moreover, different colors of the patina result from the exposure geometry. The surface color may be pale green for unsheltered areas, and green and mat black for sheltered areas [4]. Thus, in real outdoor bronze monuments, the corrosion behavior is strongly influenced by the exposure geometry. This must be taken into account when designing conservation procedures, since the patina is in most cases the support on which corrosion inhibitors are applied. Presently, for protecting outdoor bronzes against atmospheric corrosion, inhibitors and protective treatments are used. BTA and its derivatives, which are the most common inhibitors used for copper and its alloy, were found to be toxic for the environment and human health [5, 6]. Moreover, it has been demonstrated that BTA is efficient when applied on bare copper but not as efficient when applied on bare bronze [7]. Thus it was necessary to find alternative compounds. Silane-based inhibitors (already successfully tested on copper and other metallic substrates [8]), were taken into consideration as a non-toxic, environmentally friendly alternative to BTA derivatives for bronze protection. The purpose of this thesis was based on the assessment of the efficiency of a selected compound, to protect the bronze against corrosion, which is the 3-mercapto-propyl-trimethoxy-silane (PropS-SH). It was selected thanks to the collaboration with the Corrosion Studies Centre “Aldo Daccò” at the Università di Ferrara. Since previous studies [9, 10, 11] demonstrated that the addition of nanoparticles to silane-based inhibitors leads to an increase of the protective efficiency, we also wanted to evaluate the influence of the addition of CeO2, La2O3, TiO2 nanoparticles on the protective efficiency of 3-mercapto-propyl-trimethoxy-silane, applied on pre-patinated bronze surfaces. This study is the first section of the thesis. Since restorers have to work on patinated bronzes and not on bare metal (except for contemporary art), it is important to be able to recreate the patina, under laboratory conditions, either in sheltered or unsheltered conditions to test the coating and to obtain reliable results. Therefore, at the University of Bologna, different devices have been designed to simulate the real outdoor conditions and to create a patina which is representative of real application conditions of inhibitor or protective treatments. In particular, accelerated ageing devices by wet & dry (simulating the action of stagnant rain in sheltered areas [12]) and by dropping (simulating the leaching action of the rain in unsheltered areas [1]) tests were used. In the present work, we used the dropping test as a method to produce pre-patinated bronze surfaces for the application of a candidate inhibitor as well as for evaluating its protective efficiency on aged bronze (unsheltered areas). In this thesis, gilded bronzes were also studied. When they are exposed to the outside environment, a corrosion phenomenon appears which is due to the electrochemical couple gold/copper where copper is the anode. In the presence of an electrolyte, this phenomenon results in the formation of corrosion products than will cause a blistering of the gold (or a break-up and loss of the film in some cases). Moreover, because of the diffusion of the copper salts to the surface, aggregates and a greenish film will be formed on the surface of the sample [13]. By coating gilded samples with PropS-SH and PropS-SH containing nano-particles and carrying out accelerated ageing by the dropping test, a discussion is possible on the effectiveness of this coating, either with nano-particles or not, against the corrosion process. This part is the section 2 of this thesis. Finally, a discussion about laser treatment aiming at the assessment of reversibility/re-applicability of the PropS-SH coating can be found in section 3 of this thesis. Because the protective layer loses its efficiency with time, it is necessary to find a way of removing the silane layer, before applying a new one on the “bare” patina. One request is to minimize the damages that a laser treatment would create on the patina. Therefore, different laser fluences (energy/surface) were applied on the sample surface during the treatment process in order to find the best range of fluence. In particular, we made a characterization of surfaces before and after removal of PropS-SH (applied on a naturally patinated surface, and subsequently aged by natural exposure) with laser methods. The laser removal treatment was done by the CNR Institute of Applied Physics “Nello Carrara” of Sesto Fiorentino in Florence. In all the three sections of the thesis, a range of non-destructive spectroscopic methods (Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), μ-Raman spectroscopy, X-Ray diffractometry (XRD)) were used for characterizing the corroded surfaces. AAS (Atomic Absorption Spectroscopy) was used to analyze the ageing solutions from the dropping test in sections 1 and 2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most common method of achieve the required fire resistance is by the use of passive fire protection systems, being intumescent coatings the fire protection material frequently used. These are usually considered thin film coatings as they are applied with a dry film thickness (DFT) between 0.3-3 [mm]. The required DFT is obtained by experimental fire resistance tests performed to assess the contribution of this reactive fire protection material to the steel member fire resistance. This tests are done after dry coating and a short time period of atmospheric conditioning, at constant temperature and humidity. As the coatings formulation is mainly made from polymeric basis compounds, it is expected that the environmental factors, such temperature, humidity and UV radiation (UVA and UVB) significantly affect the intumescent coating fire protection performance and its durability. This work presents a research study about the effects of aging on the fire protection performance of intumescent coatings. A commercial water based coating is submitted to an accelerated aging cycle, using a QUV Accelerated Weathering Tester. This tests aim to simulate 10 years of the coating natural aging. The coating durability is tested comparing the fire protection of small steel samples submitted to a radiant heat flux exposure from a cone calorimeter. In total, 28 tests were performed on intumescent coating protected steel specimens, of which 14 specimens were tested before the hydrothermal aging test and other 14 after accelerated aging. The experimental tests results of the steel temperature evolution shows that increasing the intumescent dry coating film thickness, the fire resistance time increases. After the accelerated aging cycles, the coating lose their ability to expand, resulting in an increase of the steel temperature of approximately 200 [ºC], compared to the samples without aging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents frequentist inference of accelerated life test data of series systems with independent log-normal component lifetimes. The means of the component log-lifetimes are assumed to depend on the stress variables through a linear stress translation function that can accommodate the standard stress translation functions in the literature. An expectation-maximization algorithm is developed to obtain the maximum likelihood estimates of model parameters. The maximum likelihood estimates are then further refined by bootstrap, which is also used to infer about the component and system reliability metrics at usage stresses. The developed methodology is illustrated by analyzing a real as well as a simulated dataset. A simulation study is also carried out to judge the effectiveness of the bootstrap. It is found that in this model, application of bootstrap results in significant improvement over the simple maximum likelihood estimates.