978 resultados para ANN model
Resumo:
This thesis is an outcome of the investigations carried out on the development of an Artificial Neural Network (ANN) model to implement 2-D DFT at high speed. A new definition of 2-D DFT relation is presented. This new definition enables DFT computation organized in stages involving only real addition except at the final stage of computation. The number of stages is always fixed at 4. Two different strategies are proposed. 1) A visual representation of 2-D DFT coefficients. 2) A neural network approach. The visual representation scheme can be used to compute, analyze and manipulate 2D signals such as images in the frequency domain in terms of symbols derived from 2x2 DFT. This, in turn, can be represented in terms of real data. This approach can help analyze signals in the frequency domain even without computing the DFT coefficients. A hierarchical neural network model is developed to implement 2-D DFT. Presently, this model is capable of implementing 2-D DFT for a particular order N such that ((N))4 = 2. The model can be developed into one that can implement the 2-D DFT for any order N upto a set maximum limited by the hardware constraints. The reported method shows a potential in implementing the 2-D DF T in hardware as a VLSI / ASIC
Resumo:
In this study, an effective microbial consortium for the biodegradation of phenol was grown under different operational conditions, and the effects of phosphate concentration (1.4 g L-1, 2.8 g L-1, 4.2 g L-1), temperature (25 degrees C, 30 degrees C, 35 degrees C), agitation (150 rpm, 200 rpm, 250 rpm) and pH (6, 7, 8) on phenol degradation were investigated, whereupon an artificial neural network (ANN) model was developed in order to predict degradation. The learning, recall and generalization characteristics of neural networks were studied using data from the phenol degradation system. The efficiency of the model generated by the ANN was then tested and compared with the experimental results obtained. In both cases, the results corroborate the idea that aeration and temperature are crucial to increasing the efficiency of biodegradation.
Resumo:
Euphausiids constitute major biomass component in shelf ecosystems and play a fundamental role in the rapid vertical transport of carbon from the ocean surface to the deeper layers during their daily vertical migration (DVM). DVM depth and migration patterns depend on oceanographic conditions with respect to temperature, light and oxygen availability at depth, factors that are highly dependent on season in most marine regions. Changes in the abiotic conditions also shape Euphausiid metabolism including aerobic and anaerobic energy production. Here we introduce a global krill respiration model which includes the effect of latitude (LAT), the day of the year of interest (DoY), and the number of daylight hours on the day of interest (DLh), in addition to the basal variables that determine ectothermal oxygen consumption (temperature, body mass and depth) in the ANN model (Artificial Neural Networks). The newly implemented parameters link space and time in terms of season and photoperiod to krill respiration. The ANN model showed a better fit (r**2=0.780) when DLh and LAT were included, indicating a decrease in respiration with increasing LAT and decreasing DLh. We therefore propose DLh as a potential variable to consider when building physiological models for both hemispheres. We also tested for seasonality the standard respiration rate of the most common species that were investigated until now in a large range of DLh and DoY with Multiple Linear Regression (MLR) or General Additive model (GAM). GAM successfully integrated DLh (r**2= 0.563) and DoY (r**2= 0.572) effects on respiration rates of the Antarctic krill, Euphausia superba, yielding the minimum metabolic activity in mid-June and the maximum at the end of December. Neither the MLR nor the GAM approach worked for the North Pacific krill Euphausia pacifica, and MLR for the North Atlantic krill Meganyctiphanes norvegica remained inconclusive because of insufficient seasonal data coverage. We strongly encourage comparative respiration measurements of worldwide Euphausiid key species at different seasons to improve accuracy in ecosystem modelling.
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Multivariate models were developed using Artificial Neural Network (ANN) and Least Square - Support Vector Machines (LS-SVM) for estimating lignin siringyl/guaiacyl ratio and the contents of cellulose, hemicelluloses and lignin in eucalyptus wood by pyrolysis associated to gaseous chromatography and mass spectrometry (Py-GC/MS). The results obtained by two calibration methods were in agreement with those of reference methods. However a comparison indicated that the LS-SVM model presented better predictive capacity for the cellulose and lignin contents, while the ANN model presented was more adequate for estimating the hemicelluloses content and lignin siringyl/guaiacyl ratio.
Resumo:
The quantitative structure property relationship (QSPR) for the boiling point (Tb) of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) was investigated. The molecular distance-edge vector (MDEV) index was used as the structural descriptor. The quantitative relationship between the MDEV index and Tb was modeled by using multivariate linear regression (MLR) and artificial neural network (ANN), respectively. Leave-one-out cross validation and external validation were carried out to assess the prediction performance of the models developed. For the MLR method, the prediction root mean square relative error (RMSRE) of leave-one-out cross validation and external validation was 1.77 and 1.23, respectively. For the ANN method, the prediction RMSRE of leave-one-out cross validation and external validation was 1.65 and 1.16, respectively. A quantitative relationship between the MDEV index and Tb of PCDD/Fs was demonstrated. Both MLR and ANN are practicable for modeling this relationship. The MLR model and ANN model developed can be used to predict the Tb of PCDD/Fs. Thus, the Tb of each PCDD/F was predicted by the developed models.
Resumo:
The mortality rate of older patients with intertrochanteric fractures has been increasing with the aging of populations in China. The purpose of this study was: 1) to develop an artificial neural network (ANN) using clinical information to predict the 1-year mortality of elderly patients with intertrochanteric fractures, and 2) to compare the ANN's predictive ability with that of logistic regression models. The ANN model was tested against actual outcomes of an intertrochanteric femoral fracture database in China. The ANN model was generated with eight clinical inputs and a single output. ANN's performance was compared with a logistic regression model created with the same inputs in terms of accuracy, sensitivity, specificity, and discriminability. The study population was composed of 2150 patients (679 males and 1471 females): 1432 in the training group and 718 new patients in the testing group. The ANN model that had eight neurons in the hidden layer had the highest accuracies among the four ANN models: 92.46 and 85.79% in both training and testing datasets, respectively. The areas under the receiver operating characteristic curves of the automatically selected ANN model for both datasets were 0.901 (95%CI=0.814-0.988) and 0.869 (95%CI=0.748-0.990), higher than the 0.745 (95%CI=0.612-0.879) and 0.728 (95%CI=0.595-0.862) of the logistic regression model. The ANN model can be used for predicting 1-year mortality in elderly patients with intertrochanteric fractures. It outperformed a logistic regression on multiple performance measures when given the same variables.
Resumo:
Post-transcriptional gene silencing by RNA interference is mediated by small interfering RNA called siRNA. This gene silencing mechanism can be exploited therapeutically to a wide variety of disease-associated targets, especially in AIDS, neurodegenerative diseases, cholesterol and cancer on mice with the hope of extending these approaches to treat humans. Over the recent past, a significant amount of work has been undertaken to understand the gene silencing mediated by exogenous siRNA. The design of efficient exogenous siRNA sequences is challenging because of many issues related to siRNA. While designing efficient siRNA, target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. So before doing gene silencing by siRNAs, it is essential to analyze their off-target effects in addition to their inhibition efficiency against a particular target. Hence designing exogenous siRNA with good knock-down efficiency and target specificity is an area of concern to be addressed. Some methods have been developed already by considering both inhibition efficiency and off-target possibility of siRNA against agene. Out of these methods, only a few have achieved good inhibition efficiency, specificity and sensitivity. The main focus of this thesis is to develop computational methods to optimize the efficiency of siRNA in terms of “inhibition capacity and off-target possibility” against target mRNAs with improved efficacy, which may be useful in the area of gene silencing and drug design for tumor development. This study aims to investigate the currently available siRNA prediction approaches and to devise a better computational approach to tackle the problem of siRNA efficacy by inhibition capacity and off-target possibility. The strength and limitations of the available approaches are investigated and taken into consideration for making improved solution. Thus the approaches proposed in this study extend some of the good scoring previous state of the art techniques by incorporating machine learning and statistical approaches and thermodynamic features like whole stacking energy to improve the prediction accuracy, inhibition efficiency, sensitivity and specificity. Here, we propose one Support Vector Machine (SVM) model, and two Artificial Neural Network (ANN) models for siRNA efficiency prediction. In SVM model, the classification property is used to classify whether the siRNA is efficient or inefficient in silencing a target gene. The first ANNmodel, named siRNA Designer, is used for optimizing the inhibition efficiency of siRNA against target genes. The second ANN model, named Optimized siRNA Designer, OpsiD, produces efficient siRNAs with high inhibition efficiency to degrade target genes with improved sensitivity-specificity, and identifies the off-target knockdown possibility of siRNA against non-target genes. The models are trained and tested against a large data set of siRNA sequences. The validations are conducted using Pearson Correlation Coefficient, Mathews Correlation Coefficient, Receiver Operating Characteristic analysis, Accuracy of prediction, Sensitivity and Specificity. It is found that the approach, OpsiD, is capable of predicting the inhibition capacity of siRNA against a target mRNA with improved results over the state of the art techniques. Also we are able to understand the influence of whole stacking energy on efficiency of siRNA. The model is further improved by including the ability to identify the “off-target possibility” of predicted siRNA on non-target genes. Thus the proposed model, OpsiD, can predict optimized siRNA by considering both “inhibition efficiency on target genes and off-target possibility on non-target genes”, with improved inhibition efficiency, specificity and sensitivity. Since we have taken efforts to optimize the siRNA efficacy in terms of “inhibition efficiency and offtarget possibility”, we hope that the risk of “off-target effect” while doing gene silencing in various bioinformatics fields can be overcome to a great extent. These findings may provide new insights into cancer diagnosis, prognosis and therapy by gene silencing. The approach may be found useful for designing exogenous siRNA for therapeutic applications and gene silencing techniques in different areas of bioinformatics.
Resumo:
The ongoing depletion of the coastal aquifer in the Gaza strip due to groundwater overexploitation has led to the process of seawater intrusion, which is continually becoming a serious problem in Gaza, as the seawater has further invaded into many sections along the coastal shoreline. As a first step to get a hold on the problem, the artificial neural network (ANN)-model has been applied as a new approach and an attractive tool to study and predict groundwater levels without applying physically based hydrologic parameters, and also for the purpose to improve the understanding of complex groundwater systems and which is able to show the effects of hydrologic, meteorological and anthropogenic impacts on the groundwater conditions. Prediction of the future behaviour of the seawater intrusion process in the Gaza aquifer is thus of crucial importance to safeguard the already scarce groundwater resources in the region. In this study the coupled three-dimensional groundwater flow and density-dependent solute transport model SEAWAT, as implemented in Visual MODFLOW, is applied to the Gaza coastal aquifer system to simulate the location and the dynamics of the saltwater–freshwater interface in the aquifer in the time period 2000-2010. A very good agreement between simulated and observed TDS salinities with a correlation coefficient of 0.902 and 0.883 for both steady-state and transient calibration is obtained. After successful calibration of the solute transport model, simulation of future management scenarios for the Gaza aquifer have been carried out, in order to get a more comprehensive view of the effects of the artificial recharge planned in the Gaza strip for some time on forestall, or even to remedy, the presently existing adverse aquifer conditions, namely, low groundwater heads and high salinity by the end of the target simulation period, year 2040. To that avail, numerous management scenarios schemes are examined to maintain the ground water system and to control the salinity distributions within the target period 2011-2040. In the first, pessimistic scenario, it is assumed that pumping from the aquifer continues to increase in the near future to meet the rising water demand, and that there is not further recharge to the aquifer than what is provided by natural precipitation. The second, optimistic scenario assumes that treated surficial wastewater can be used as a source of additional artificial recharge to the aquifer which, in principle, should not only lead to an increased sustainable yield of the latter, but could, in the best of all cases, revert even some of the adverse present-day conditions in the aquifer, i.e., seawater intrusion. This scenario has been done with three different cases which differ by the locations and the extensions of the injection-fields for the treated wastewater. The results obtained with the first (do-nothing) scenario indicate that there will be ongoing negative impacts on the aquifer, such as a higher propensity for strong seawater intrusion into the Gaza aquifer. This scenario illustrates that, compared with 2010 situation of the baseline model, at the end of simulation period, year 2040, the amount of saltwater intrusion into the coastal aquifer will be increased by about 35 %, whereas the salinity will be increased by 34 %. In contrast, all three cases of the second (artificial recharge) scenario group can partly revert the present seawater intrusion. From the water budget point of view, compared with the first (do nothing) scenario, for year 2040, the water added to the aquifer by artificial recharge will reduces the amount of water entering the aquifer by seawater intrusion by 81, 77and 72 %, for the three recharge cases, respectively. Meanwhile, the salinity in the Gaza aquifer will be decreased by 15, 32 and 26% for the three cases, respectively.
Resumo:
The objective of this study is to develop a Pollution Early Warning System (PEWS) for efficient management of water quality in oyster harvesting areas. To that end, this paper presents a web-enabled, user-friendly PEWS for managing water quality in oyster harvesting areas along Louisiana Gulf Coast, USA. The PEWS consists of (1) an Integrated Space-Ground Sensing System (ISGSS) gathering data for environmental factors influencing water quality, (2) an Artificial Neural Network (ANN) model for predicting the level of fecal coliform bacteria, and (3) a web-enabled, user-friendly Geographic Information System (GIS) platform for issuing water pollution advisories and managing oyster harvesting waters. The ISGSS (data acquisition system) collects near real-time environmental data from various sources, including NASA MODIS Terra and Aqua satellites and in-situ sensing stations managed by the USGS and the NOAA. The ANN model is developed using the ANN program in MATLAB Toolbox. The ANN model involves a total of 6 independent environmental variables, including rainfall, tide, wind, salinity, temperature, and weather type along with 8 different combinations of the independent variables. The ANN model is constructed and tested using environmental and bacteriological data collected monthly from 2001 – 2011 by Louisiana Molluscan Shellfish Program at seven oyster harvesting areas in Louisiana Coast, USA. The ANN model is capable of explaining about 76% of variation in fecal coliform levels for model training data and 44% for independent data. The web-based GIS platform is developed using ArcView GIS and ArcIMS. The web-based GIS system can be employed for mapping fecal coliform levels, predicted by the ANN model, and potential risks of norovirus outbreaks in oyster harvesting waters. The PEWS is able to inform decision-makers of potential risks of fecal pollution and virus outbreak on a daily basis, greatly reducing the risk of contaminated oysters to human health.
Resumo:
This work presents the first study and development of an electronic tongue analysis system for the monitoring of nitrogen stable species: nitrate, nitrite and ammonium in water. The electronic tongue was composed of an array of 15 potentiometric poly(vinyl chloride) membrane sensors sensitive to cations and anions plus an artificial neural network (ANN) response model. The building of the ANN model was performed in a medium containing sodium, potassium, and chloride as interfering ions, thus simulating real environmental samples. The correlation coefficient in the cross-validation of nitrate, nitrite and ammonium was satisfactory in the three cases with values higher than 0.92. Finally, the utility of the proposed system is shown in the monitoring of the photoelectrocatalytic treatment of nitrate. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The few existing studies on macrobenthic communities of the deep Arctic Ocean report low standing stocks, and confirm a gradient with declining biomass from the slopes down to the basins as commonly reported for deep-sea benthos. In this study we have further investigated the relationship of faunal abundance (N), biomass (B) as well as community production (P) with water depth, geographical latitude and sea ice concentration. The underlying dataset combines legacy data from the past 20 years, as well as recent field studies selected according to standardized quality control procedures. Community P/B and production were estimated using the multi-parameter ANN model developed by Brey (2012). We could confirm the previously described negative relationship of water depth and macrofauna standing stock in the Arctic deep-sea. Furthermore, the sea-ice cover increasing with high latitudes, correlated with decreasing abundances of down to < 200 individuals/m**2, biomasses of < 65 mg C/m**2 and P of < 75 mg C/m**2/y. Stations under influence of the seasonal ice zone (SIZ) showed much higher standing stock and P means between 400 - 1400 mg C/m**2/y; even at depths up to 3700 m. We conclude that particle flux is the key factor structuring benthic communities in the deep Arctic ocean, explaining both the low values in the ice-covered Arctic basins and the high values along the SIZ.
Resumo:
This paper describes the accurate characterization of the reflection coefficients of a multilayered reflectarray element by means of artificial neural networks. The procedure has been tested with different RA elements related to actual specifications. Up to 9 parameters were considered and the complete reflection coefficient matrix was accurately obtained, including cross polar reflection coefficients. Results show a good agreement between simulations carried out by the Method of Moments and the ANN model outputs at RA element level, as well as with performances of the complete RA antenna designed.