Determinação de constituintes químicos em madeira de eucalipto por Pi-CG/EM e calibração multivariada: comparação entre redes neurais artificiais e máquinas de vetor suporte
Data(s) |
01/01/2011
|
---|---|
Resumo |
Multivariate models were developed using Artificial Neural Network (ANN) and Least Square - Support Vector Machines (LS-SVM) for estimating lignin siringyl/guaiacyl ratio and the contents of cellulose, hemicelluloses and lignin in eucalyptus wood by pyrolysis associated to gaseous chromatography and mass spectrometry (Py-GC/MS). The results obtained by two calibration methods were in agreement with those of reference methods. However a comparison indicated that the LS-SVM model presented better predictive capacity for the cellulose and lignin contents, while the ANN model presented was more adequate for estimating the hemicelluloses content and lignin siringyl/guaiacyl ratio. |
Formato |
text/html |
Identificador |
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422011000200020 |
Idioma(s) |
pt |
Publicador |
Sociedade Brasileira de Química |
Fonte |
Química Nova v.34 n.2 2011 |
Palavras-Chave | #analytical pyrolysis #artificial neural network #least square-support vector machine |
Tipo |
journal article |