Determinação de constituintes químicos em madeira de eucalipto por Pi-CG/EM e calibração multivariada: comparação entre redes neurais artificiais e máquinas de vetor suporte


Autoria(s): Nunes,Cleiton Antônio; Lima,Claudio Ferreira; Barbosa,Luiz Cláudio de Almeida; Colodette,Jorge Luiz; Fidêncio,Paulo Henrique
Data(s)

01/01/2011

Resumo

Multivariate models were developed using Artificial Neural Network (ANN) and Least Square - Support Vector Machines (LS-SVM) for estimating lignin siringyl/guaiacyl ratio and the contents of cellulose, hemicelluloses and lignin in eucalyptus wood by pyrolysis associated to gaseous chromatography and mass spectrometry (Py-GC/MS). The results obtained by two calibration methods were in agreement with those of reference methods. However a comparison indicated that the LS-SVM model presented better predictive capacity for the cellulose and lignin contents, while the ANN model presented was more adequate for estimating the hemicelluloses content and lignin siringyl/guaiacyl ratio.

Formato

text/html

Identificador

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422011000200020

Idioma(s)

pt

Publicador

Sociedade Brasileira de Química

Fonte

Química Nova v.34 n.2 2011

Palavras-Chave #analytical pyrolysis #artificial neural network #least square-support vector machine
Tipo

journal article