Predicting soluble solid content in intact jaboticaba [Myrciaria jaboticaba (Vell.) O. Berg] fruit using near-infrared spectroscopy and chemometrics


Autoria(s): Torres Mariani, Nathalia Cristina; Costa, Rosangela Camara da; Gomes de Lima, Kassio Michell; Nardini, Viviani; Cunha Junior, Luis Carlos; Almeida Teixeira, Gustavo Henrique de
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

18/03/2015

18/03/2015

15/09/2014

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Processo FAPESP: 08/51408-1

The aim of this study was to evaluate the potential of near-infrared reflectance spectroscopy (NIR) as a rapid and non-destructive method to determine soluble solid content (SSC) in intact jaboticaba [Myrciaria jaboticaba (Veil.) O. Berg] fruit. Multivariate calibration techniques were compared with pre-processed data and variable selection algorithms, such as partial least squares (PLS), interval partial least squares (iPLS), a genetic algorithm (GA), a successive projections algorithm (SPA) and nonlinear techniques (BP-ANN, back propagation of artificial neural networks; LS-SVM, least squares support vector machine) were applied to building the calibration models. The PLS model produced prediction accuracy (R-2 = 0.71, RMSEP = 1.33 degrees Brix, and RPD = 1.65) while the BP-ANN model (R-2 = 0.68, RMSEM = 1.20 degrees Brix, and RPD = 1.83) and LS-SVM models achieved lower performance metrics (R-2 = 0.44, RMSEP = 1.89 degrees Brix, and RPD = 1.16). This study was the first attempt to use NIR spectroscopy as a non-destructive method to determine SSC jaboticaba fruit. (C) 2014 Elsevier Ltd. All rights reserved.

Formato

458-462

Identificador

http://dx.doi.org/10.1016/j.foodchem.2014.03.066

Food Chemistry. Oxford: Elsevier Sci Ltd, v. 159, p. 458-462, 2014.

0308-8146

http://hdl.handle.net/11449/116549

10.1016/j.foodchem.2014.03.066

WOS:000336109500065

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Food Chemistry

Direitos

closedAccess

Palavras-Chave #NIR spectroscopy #PLS #BP-ANN #LS-SVM #Variables selection
Tipo

info:eu-repo/semantics/article