919 resultados para AMPEROMETRIC BIOSENSOR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel amperometric biosensor utilizing two enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP), was developed for the cathodic detection of glucose. The glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of GOD on the surface of a HRP-modified sol-gel derived-mediated ceramic carbon electrode. Ferrocenecarboxylic acid (FCA) was used as mediator to transfer electron between enzyme and electrode. In the hetero-bilayer configuration of electrode, all enzymes were well immobilized in electrode matrices and showed favorable enzymatic activities. The amperometric detection of glucose was carried out at +0.16 V (versus saturated calomel reference electrode (SCE)) in 0.1 M phosphate buffer solution (pH 6.9) with a linear response range between 8.0 x 10(-5) and 1.3 x 10(-3) M glucose. The biosensor showed a good suppression of interference in the amperometric detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A unique sol-gel enzyme electrode for inert organic solvents is developed that is based on the partition equilibrium of the substrate between water-organic solvent media and the enzyme membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hydrogen peroxide biosensor was fabricated by coating a sol-gel-peroxidase layer onto a Nafion-methylene green modified electrode. Immobilization of methylene green (MG) was attributed to the electrostatic force between MG(+) and the negatively charged sulfonic acid groups in Nafion polymer, whereas immobilization of horseradish peroxidase was attributed to the encapsulation function of the silica sol-gel network. Cyclic voltammetry and chronoamperometry were employed to demonstrate the feasibility of electron transfer between sol-gel-immobilized peroxidase and a glassy carbon electrode. Performance of the sensor was evaluated with respect to response time, sensitivity as well as operational stability. The enzyme electrode has a sensitivity of 13.5 mu A mM(-1) with a detection limit of 1.0 x 10(-7) M H2O2, and the sensor achieved 95% of the steady-state current within 20 s. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel amperometric glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of glucose oxidase (GOD) on the surface of a horseradish peroxidase (HRP) modified ferrocenecarboxylic acid (FCA) mediated sol-gel derived ceramic carbon electrode. The amperometric detection of glucose was carried out at +0.16 V (vs. SCE) in 0.1 mol/L phosphate buffer solution (pH 6.9) with a linear response range between 8.0x10(-5) and 1.3x10(-3) mol/L of glucose. The biosensor showed a good suppression of interference and a negligible deviation in the amperometric detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reagentless amperometric hydrogen peroxide biosensor was developed. Horseradish peroxidase (HRP) was immobilized in a novel sol-gel organic-inorganic hybrid matrix that is composed of silica sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine (PVA-g-PVP). Tetrathiafulvalene (TTF) was employed as a mediator and could lower the operating potential to -50 mV (versus Ag/AgCl). The sensor achieved 95% of the steady-state current in 15 s. Linear calibration for hydrogen peroxide was up to 1.3 mM with the detection limit of 2.5 x 10(-7)M. The enzyme electrode retained about 94% of its initial activity after 30 days of storage in a dry state at 4 degreesC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tyrosinase-based amperometric biosensor using a self-gelatinizable graft copolymer of poly(vinyl alcohol) with 4-vinylpyridine (PVA-g-PVP) as an immobilization matrix was constructed. The 4-vinylpyridine component of PVA-g-PVP enhances the adherence to a glassy carbon electrode surface. The content of 4-vinylpyridine in this immobilization matrix plays a key role in retaining the activity of tyrosinase. A simple, milder method was adopted by simply syringing the copolymer-tyrosinase aqueous solution on to the electrode surface and allowing water to evaporate at 4 degrees C in a refrigerator. Several parameters, including copolymer composition; pH, applied potential and enzyme membrane composition, ware optimized. The enzyme membrane composition can be varied to obtain higher sensitivity or a wider linear detection range. The biosensor was used for the determination of phenol, p-cresol and catechol. The biosensor exhibited excellent reproducibility, stability and sensitive response and can be used in flow injection analysis. The biosensor showed an extended linear range in hydrophilic organic solvents and it can be used in monitoring organic reaction processes. The analytical performance demonstrated this immobilization matrix is suitable for the immobilization of tyrosinase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of benzoic acid, thiourea and 2-mercaptoethanol in three pure organic solvents, viz., chloroform, chlorobenzene and 1,2-dichlorobenzene, by using an amperometric cryohydrogel tyrosinase biosensor is described. Measurements were carried out with phenol as the enzyme substrate. Kinetic parameters (K-i and I-50) were determined in the three solvents for various inhibitors. The sensor showed the most sensitive measurements to these inhibitors in pure chloroform. The solvent-induced deviation of the biosensor to thiourea was evaluated by means of Hill coefficients. The smallest deviation as observed in 1,2-dichlorobenzene, owing to the high hydrophobicity of this solvent. The nature of the inhibition process and its reversibility mere also examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports the utilization of two methodologies for carbaryl determination in tomatoes. The measurements were carried out using an amperometric biosensor technique based on the inhibition of acetylcholinesterase activity due to carbaryl adsorption and a HPLC procedure. The electrochemical experiments were performed in 0.1 mol L-1 phosphate buffer solutions at pH 7.4 with an incubation time of 8 min. The analytical curve obtained in pure solutions showed excellent linearity in the 5.0 x 10(-5) to 75 x 10(-5) mol L-1 range, with the limit of detection at 0.4 x 10(-3) gL(-1). The application of such a methodology in tomato samples involved solely liquidising the samples, which were spiked with 6.0 x 10(-6) and 5.0 x 10(-5) mol L-1 carbaryl. Recovery in such samples presented values of 99.0 and 92.4%, respectively. In order to obtain a comparison, HPLC experiments were also conducted under similar conditions. However, the tomato samples have to be manipulated by an extraction procedure (MSPD), which yielded much lower recovery values (78.3 and 84.8%, respectively). On the other hand, the detection limit obtained was much lower than that for the biosensor, i.e., 3.2 x 10(-6) g L-1. Finally, the biosensor methodology was employed to analyze carbaryl directly inside the tomato, without any previous manipulation. In this case, the biosensor was immersed in the tomato pulp, which had previously been spiked with the pesticide for 8 min, removed and inserted in the electrochemical cell. A recovery of 83.4% was obtained, showing very low interference of the matrix constituents. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractional factorial design and factorial with center point design were applied to the development of an amperometric biosensor for the detection of the hepatitis C virus. Biomolecules were immobilized by adsorption on graphite electrodes modified with siloxane-poly(propyleneoxide) hybrid matrix prepared using the sol-gel method. Several parameters were optimized, such as the streptavidin concentration at 0.01 mg mL(-1) and 1.0% bovine serum albumin, the incubation time of the electrodes in the complementary DNA solution for 30 minutes and a 1: 1500 dilution of the avidin-peroxidase conjugate, among others. The application of chemometric studies has been efficient, since the best conditions have been established with a restricted number of experiments, indicating the influence of different factors on the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desenvolveu-se um biossensor para ácido L-ascórbico empregando ascorbato oxidase. A enzima foi extraída do mesocarpo de pepino com solução tampão fosfato 0,05 mol L-1, pH 5,8 contendo NaCl 0,5 mol L-1. Após diálise versus solução tampão fosfato 0,05 mol L-1, pH 5,8 a enzima foi imobilizada em rede de nylon através de ligação covalente com glutaraldeído. A membrana foi acoplada em eletrodo de O2 e a reação monitorada pelo consumo de oxigênio a -600 mV em análise em fluxo (solução tampão fosfato 0,05 mol L-1, pH 5,8 como carregador e vazão 0,5 mL min-1). A curva analítica apresentou-se linear entre 1,2x10-4 a 1,0x10-3 mol L-1. O tempo de vida do biossensor foi de 500 análises. Amostras de medicamentos foram analisadas com a metodologia proposta e os resultados comparados com os obtidos com HPLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An amperometric biosensor for salicylate detection was developed by immobilizing salicylate hydroxylase via glutaraldehyde onto a polypyrrole film doped with hexacyanoferrate, supported on a glassy carbon electrode surface. The sensor monitors the catechol produced in the enzymatic reaction on the film surface, at an applied potential of 150 mV vs. SCE. A [NADH]/[salicylate] ratio between 2 and 4 gave the best response. The biosensor presented the best performance in a solution with pH=7.4. The response time was about 40 s. A linear range of response was observed for salicylate concentrations between 1.0x10(-5) and 1.0x10(-4) mol l(-1) and the equation adjusted for this curve was I=(-0.04+/-0.01)+(11.4+/-0.2)[salicylate] with a correlation coefficient of 0.999 for n=6. The biosensor retains its activity for at least 10 days despite daily use. The results obtained using the biosensor for salicylate determination, in three different samples of antithermic drugs, presented a good correlation with the standard colorimetric method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly sensitive amperometric biosensor for determination of carbamate pesticides directly in water, fruit and vegetable samples has been evaluated, electrochemically characterized and optimized. The biosensor strip was fabricated in screen printed technique on a ceramic support using silver-based paste for reference electrode, and platinum-based paste for working and auxiliary electrodes. The working electrode was modified by a layer of carbon paste mixed with cobalt(II) phthalocyanine and acetylcellulose. Cholinesterase (ChE) enzymes with low enzymatic charge were immobilized on this layer. The operational simplicity of the biosensor consists in that a small drop (similar to 50 mu l) of substrate or sample is deposited on a horizontally positioned biosensor strip representing the microelectrochemical cell. The working potential of the biosensor was 370 mV versus Ag/AgI on a ship reference electrode preventing the interference of electroactive species which are oxidable at more positive potentials. The biosensor was applied to investigate the degradation of two reference ChE inhibitors in freeze dried water under different storage conditions and for direct determination of some N-methylcarbamates (NMCs) in fruit and vegetable samples at ppb concentration levels without any sample pretreatment. A comparison of the obtained results for the total carbamate concentration was done against those obtained using HPLC measurements. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)