951 resultados para 030406 Proteins and Peptides
Resumo:
CVD are the leading cause of death worldwide. Hypertension, a major controllable risk factor of CVD, is intimately associated with vascular dysfunction, a defect which is also now recognised to be a major, modifiable risk factor for the development of CVD. The purpose of the present review was to critically evaluate the evidence for the effects of milk proteins and their associated peptides on blood pressure (BP) and vascular dysfunction. After a detailed literature search, the number of human trials evaluating the antihypertensive effects of casein-derived peptides (excluding isoleucine-proline-proline and valine-proline-proline) was found to be limited; the studies were preliminary with substantial methodological limitations. Likewise, the data from human trials that examined the effects of whey protein and peptides were also scarce and inconsistent. To date, only one study has conducted a comparative investigation on the relative effects of the two main intact milk proteins on BP and vascular function. While both milk proteins were shown to reduce BP, only whey protein improved measures of arterial stiffness. In contrast, a growing number of human trials have produced evidence to support beneficial effects of both milk proteins and peptides on vascular health. However, comparison of the relative outcomes from these trials is difficult owing to variation in the forms of assessment and measures of vascular function. In conclusion, there is an accumulating body of evidence to support positive effects of milk proteins in improving and/or maintaining cardiovascular health. However, the variable quality of the studies that produced this evidence, and the lack of robust, randomised controlled intervention trials, undermines the formulation of firm conclusions on the potential benefits of milk proteins and peptides on vascular health.
Resumo:
The study of protein fold is a central problem in life science, leading in the last years to several attempts for improving our knowledge of the protein structures. In this thesis this challenging problem is tackled by means of molecular dynamics, chirality and NMR studies. In the last decades, many algorithms were designed for the protein secondary structure assignment, which reveals the local protein shape adopted by segments of amino acids. In this regard, the use of local chirality for the protein secondary structure assignment was demonstreted, trying to correlate as well the propensity of a given amino acid for a particular secondary structure. The protein fold can be studied also by Nuclear Magnetic Resonance (NMR) investigations, finding the average structure adopted from a protein. In this context, the effect of Residual Dipolar Couplings (RDCs) in the structure refinement was shown, revealing a strong improvement of structure resolution. A wide extent of this thesis is devoted to the study of avian prion protein. Prion protein is the main responsible of a vast class of neurodegenerative diseases, known as Bovine Spongiform Encephalopathy (BSE), present in mammals, but not in avian species and it is caused from the conversion of cellular prion protein to the pathogenic misfolded isoform, accumulating in the brain in form of amiloyd plaques. In particular, the N-terminal region, namely the initial part of the protein, is quite different between mammal and avian species but both of them contain multimeric sequences called Repeats, octameric in mammals and hexameric in avians. However, such repeat regions show differences in the contained amino acids, in particular only avian hexarepeats contain tyrosine residues. The chirality analysis of avian prion protein configurations obtained from molecular dynamics reveals a high stiffness of the avian protein, which tends to preserve its regular secondary structure. This is due to the presence of prolines, histidines and especially tyrosines, which form a hydrogen bond network in the hexarepeat region, only possible in the avian protein, and thus probably hampering the aggregation.
Resumo:
In many vertebrate and invertebrate species mediators of innate immunity include antimicrobial peptides (AMPs) such as peptide fragments of histones and other proteins with previously ascribed different functions. Shark AMPs have not been described and this research examines the antibacterial activity of nurse shark (Ginglymostoma cirratum) peripheral blood leukocyte lysates. Screening of lysates prepared by homogenizing unstimulated peripheral blood leukocytes identified muramidase (lysozyme-like) and non-muramidase antibacterial activity. Lysates were tested for lysozyme using the lysoplate assays, and antibacterial (AB) activity was assayed for by a microdilution growth assay that was developed using Planococcus citreus as the target bacterium. Fractionation of crude lysates by ion exchange and affinity chromatography was followed by a combination of SDS-PAGE with LC/MS-MS and/or N-terminal sequence analysis of low molecular weight protein bands (<20 kDa). This yielded several peptides with amino acid sequence similarity to lysozyme, ubiquitin, hemoglobin, human histones H2A, H2B and H4 and to antibacterial histone fragments of the catfish and the Asian toad. Not all peptide sequences corresponded to peptides potentially antibacterial. The correlation of a specific protein band in active lysate fractions was accomplished by employing the acid-urea gel overlay assays in which AB activity was seen as zones of growth inhibition on a lawn of P. citreus at a position corresponding to that of the putative AB protein band. This study is the first to describe putative AMPs in the shark and their potential role in innate immunity.^
Resumo:
Snake venoms are complex mixtures of biologically active proteins and peptides. Many affect haemostasis by activating or inhibiting coagulant factors or platelets, or by disrupting endothelium. Snake venom components are classified into various families, such as serine proteases, metalloproteinases, C-type lectin-like proteins, disintegrins and phospholipases. Snake venom C-type lectin-like proteins have a typical fold resembling that in classic C-type lectins such as the selectins and mannose-binding proteins. Many snake venom C-type lectin-like proteins have now been characterized, as heterodimeric structures with alpha and beta subunits that often form large molecules by multimerization. They activate platelets by binding to VWF or specific receptors such as GPIb, alpha2beta1 and GPVI. Simple heterodimeric GPIb-binding molecules mainly inhibit platelet functions, whereas multimeric ones activate platelets. A series of tetrameric snake venom C-type lectin-like proteins activates platelets by binding to GPVI while another series affects platelet function via integrin alpha2beta1. Some act by inducing VWF to bind to GPIb. Many structures of these proteins, often complexed with their ligands, have been determined. Structure-activity studies show that these proteins are quite complex despite similar backbone folding. Snake C-type lectin-like proteins often interact with more than one platelet receptor and have complex mechanisms of action.
Resumo:
Imaging using MS has the potential to deliver highly parallel, multiplexed data on the specific localization of molecular ions in tissue samples directly, and to measure and map the variations of these ions during development and disease progression or treatment. There is an intrinsic potential to be able to identify the biomarkers in the same experiment, or by relatively simple extension of the technique. Unlike many other imaging techniques, no a priori knowledge of the markers being sought is necessary. This review concentrates on the use of MALDI-MS for MS imaging (MSI) of proteins and peptides, with an emphasis on mammalian tissue. We discuss the methodologies used, their potential limitations, overall experimental considerations and progress that has been made towards establishing MALDI-MSI as a routine technique for the spatially resolved measurement of peptides and proteins. As well as determining the local abundance of individual molecular ions, there is the potential to determine their identity within the same experiment using relatively simple extensions of the basic techniques. In this way MSI offers an important opportunity for biomarker discovery and identification.
Resumo:
Protein-protein interactions play significant roles in the control of gene expression. These interactions often occur between small, discrete domains within different transcription factors. In particular, zinc fingers, usually regarded as DNA-binding domains, are now also known to be involved in mediating contacts between proteins. We have investigated the interaction between the erythroid transcription factor GATA-1 and its partner, the 9 zinc finger protein, FOG (Friend of GATA). We demonstrate that this interaction represents a genuine finger-finger contact, which is dependent on zinc coordinating residues within each protein. We map the contact domains to the core of the N-terminal zinc finger of GATA-1 and the 6th zinc finger of FOG. Using a scanning substitution strategy we identify key residues within the GATA-1 N-finger which are required for FOG binding. These residues are conserved in the N-fingers of all GATA proteins known to bind FOG, but are not found in the respective C-fingers, This observation may, therefore, account for the particular specificity of FOG for N-fingers, Interestingly, the key N-finger residues are seen to form a contiguous surface, when mapped onto the structure of the N-finger of GATA-1.
Resumo:
We have previously shown that H-1 pulsed-field-gradient (PFG) NMR spectroscopy provides a facile method for monitoring protein self-association and can be used, albeit with some caveats, to measure the apparent molecular mass of the diffusant [Dingley et al. (1995) J. Biomol. NMR, 6, 321-328]. In this paper we show that, for N-15-labelled proteins, selection of H-1-N-15 multiple-quantum (MQ) coherences in PFG diffusion experiments provides several advantages over monitoring H-1 single-quantum (SQ) magnetization. First, the use of a gradient-selected MQ filter provides a convenient means of suppressing resonances from both the solvent and unlabelled solutes. Second, H-1-N-15 zero-quantum coherence dephases more rapidly than H-1 SQ coherence under the influence of a PFG. This allows the diffusion coefficients of larger proteins to be measured more readily. Alternatively, the gradient length and/or the diffusion delay may be decreased, thereby reducing signal losses from relaxation. In order to extend the size of macromolecules to which these experiments can be applied, we have developed a new MQ PFG diffusion experiment in which the magnetization is stored as longitudinal two-spin order for most of the diffusion period, thus minimizing sensitivity losses due to transverse relaxation and J-coupling evolution.
Resumo:
MHCII molecules expose a weave of antigens, which send survival or activation signals to T lymphocytes. The ongoing process of peptide binding to the MHC class II groove implicates three accessory molecules: the invariant chain, DM and DO. The invariant chain folds and directs the MHCII molecules to the endosomal pathway. Then, DM exchanges the CLIP peptide, which is a remnant of the degraded invariant chain, for peptides of better affinity. Expressed in highly specialized antigen presenting cells, DO competes with MHCII molecules for DM binding and favors the presentation of receptor-internalized antigens. Altogether, these molecules exhibit potential immunomodulatory properties that can be exploited to increase the potency of peptide vaccines. DO requires DM for maturation and to exit the ER. Interestingly, it is possible to monitor this interaction through a conformation change on DOβ that is recognized by the Mags.DO5 monoclonal antibody. Using Mags.DO5, we showed that DM stabilizes the interactions between the DO α1 and β1 chains and that DM influences DO folding in the ER. Thus, the Mags.DO5+ conformation correlates with DO egress from the ER. To further evaluate this conformation change, directed evolution was applied to DO. Of the 41 unique mutants obtained, 25% were localized at the DM-DO binding interface and 12% are at the solvent-exposed β1 domain, which is thought to be the Mags.DO5 epitope. In addition, I used the library to test the ability of HLA-DO to inhibit HLA-DM and sorted for the amount of CLIP. Interestingly, most of the mutants showed a decrease inhibitory effect, supporting the notion that the intrinsic instability of DO is a required for its function. Finally, these results support the model in which DO competes against classical MHCII molecules by sequestering DM chaperone’s function. MHCII molecules are also characterized by their ability to present superantigens, a group of bacterial or viral toxins that coerces MHCII-TCR binding in a less promiscuous fashion than what is observed in a canonical setting. While the mechanism of how bacterial superantigens form trimeric complexes with TCR and MHCII is well understood, the mouse mammary tumor virus superantigens (vSAG) are poorly defined. In the absence of a crystal structure, I chose a functional approach to examine the relation between vSAG, MHCII and TCR with the goal of uncovering the overall trimolecular architecture. I showed that TCR concomitantly binds both the MHCII α chain and the vSAG and that TCR-MHCII docking is almost canonical when coerced by vSAGs. Because many peptides may be tolerated in the MHCII groove, the pressure exerted by vSAG seems to tweak conventional TCR-MHCII interactions. Furthermore, my results demonstrate that vSAG binding to MHCII molecules is conformation-dependent and abrogated by the CLIP amino-terminal residues extending outside the peptide-binding groove. In addition, they also suggest that vSAGs cross-link adjacent MHCIIs and activate T cells via a TGXY motif.
Resumo:
Protein interactions are crucial for most cellular process. Thus, rationally designed peptides that act as competitive assembly inhibitors of protein interactions by mimicking specific, determined structural elements have been extensively used in clinical and basic research. Recently, mammalian cells have been shown to contain a large number of intracellular peptides of unknown function. Here, we investigate the role of several of these natural intracellular peptides as putative modulators of protein interactions that are related to Ca2+-calmodulin (CaM) and 14-3-3 epsilon, which are proteins that are related to the spatial organization of signal transduction within cells. At concentrations of 1-50 mu M, most of the peptides that are investigated in this study modulate the interactions of CaM and 14-3-3 epsilon with proteins from the mouse brain cytoplasm or recombinant thimet oligopeptidase (EP24.15) in vitro, as measured by surface plasmon resonance. One of these peptides (VFDVELL; VFD-7) increases the cytosolic Ca2+ concentration in a dose-dependent manner but only if introduced into HEK293 cells, which suggests a wide biological function of this peptide. Therefore, it is exciting to suggest that natural intracellular peptides are novel modulators of protein interactions and have biological functions within cells.
Resumo:
A method is reported for introducing peptides derived from SNARE proteins that control exocytosis of vesicles at boutons formed by sympathetic ganglion cells in tissue culture. These peptides were coupled to the DNA binding domain of the Drosophila transcription factor antennapedia, called penetratin, This facilitated the passage of peptides across the bouton membrane. FMI-43 was used to monitor the exocytosis of transmitter from depolarized boutons after their exposure to the penetratin-peptide sequences IETRHNEIIKLETSIRELHD of syntaxin and KGFLSSLFGGSSK of alpha -SNAP. both of which blocked secretion, whereas the peptide sequences SELDDRA-DALQAGASQFETSAAKLKRK of synaptobrevin did not. This report introduces a readily applicable method for determining the effect of different peptide sequences of vesicle-associated proteins on secretion at vertebrate boutons and presents an account of the effects of a selection of such peptides on exocytosis. NeuroReport 12:607-610 (C) 2001 Lippincott Williams & Wilkins.
Resumo:
INTRODUCTION The purpose of this study was to investigate the association between HLA-DRB1 alleles with susceptibility to rheumatoid arthritis (RA) and production of antibodies against citrullinated proteins (ACPA) and rheumatoid factor (RF). METHODS We studied 408 patients (235 with RA, 173 non-RA) and 269 controls. ACPA, RF and HLA-DR typing were determined. RESULTS We found an increased frequency of HLA DRB1 alleles with the shared epitope (SE) in ACPA-positive RA. Inversely, HLA DRB1 alleles encoding DERAA sequences were more frequent in controls than in ACPA-positive RA, and a similar trend was found for HLA DR3. However, these results could not be confirmed after stratification for the presence of the SE, probably due to the relatively low number of patients. These data may suggest that the presence of these alleles may confer a protective role for ACPA-positive RA. In RA patients we observed association between SE alleles and ACPA titers in a dose-dependent effect. The presence of HLA DR3 or DERAA-encoding alleles was associated with markedly reduced ACPA levels. No association between RF titers and HLA DR3 or DERAA-encoding alleles was found. CONCLUSIONS HLA DRB1 alleles with the SE are associated with production of ACPA. DERAA-encoding HLA-DR alleles and HLA DR3 may be protective for ACPA-positive RA.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Snake venoms are very complex mixtures of biologically active proteins and peptides that may affect hemostasis in many ways, by activating or inhibiting coagulant factors or platelets, or by disrupting endothelium. They have been classified into various families, including serine proteases, metalloproteinases, C-type lectins, disintegrins and phospholipases. The various members of a particular family act selectively on different blood coagulation factors, blood cells or tissues. Venom proteins affect platelet function in particular by binding to and blocking or clustering and activating receptors or by cleaving receptors or von Willebrand factor. They may also activate protease-activated receptors or modulate ADP release or thromboxane A(2) formation. L-amino acid oxidases activate platelets by producing H(2)O(2). Many of these purified components are valuable tools in platelet research, providing new information about receptor function and signaling.
Resumo:
The role of colostrum and milk in the neonate has been chiefly recognized as a comprehensive nutrient foodstuff. In addition, the provision of colostrum-the first milk-for early immune capacity has been well documented for several species. Colostrum is additionally a rich and concentrated source of various factors that demonstrate biological activity in vitro. Three hypotheses have been proposed for the phenotypic function of these secreted bioactive components: (1) only mammary disposal, (2) mammary cell regulation, and (3) neonatal function [gastrointestinal tract (GIT) or systemic]. Traditionally, it was assumed that the development of the GIT is preprogrammed and not influenced by events occurring in the intestinal lumen. However, a large volume of research has demonstrated that colostrum (or milk-borne) bioactive components can basically contribute to the regulation of GIT growth and differentiation, while their role in postnatal development at physiological concentrations has remained elusive. Much of our current understanding is derived from cell culture and laboratory animals, but experimentation with agriculturally important species is taking place. This chapter provides an overview of work conducted primarily in neonatal calves and secondarily in other species on the effects on neonates of selected peptide endocrine factors (hormones, growth factors, in part cytokines) in colostrum. The primary focus will be on insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) and other bioactive peptides, but new interest and concern about steroids (especially estrogens) in milk are considered as well.