949 resultados para three-dimensional (3-D) vision
Resumo:
A portable 3D laser scanning system has been designed and built for robot vision. By tilting the charge coupled device (CCD) plane of portable 3D scanning system according to the Scheimpflug condition, the depth-of-view is successfully extended from less than 40 to 100 mm. Based on the tilted camera model, the traditional two-step camera calibration method is modified by introducing the angle factor. Meanwhile, a novel segmental calibration approach, i.e., dividing the whole work range into two parts and calibrating, respectively, with corresponding system parameters, is proposed to effectively improve the measurement accuracy of the large depth-of-view 3D laser scanner. In the process of 3D reconstruction, different calibration parameters are used to transform the 2D coordinates into 3D coordinates according to the different positions of the image in the CCD plane, and the measurement accuracy of 60 mu m is obtained experimentally. Finally, the experiment of scanning a lamina by the large depth-of-view portable 3D laser scanner used by an industrial robot IRB 4400 is also employed to demonstrate the effectiveness and high measurement accuracy of our scanning system. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we have reported a very simple strategy (combined sonication with sol-gel techniques) for synthesizing well-defined silica-coated carbon nanotube (CNT) coaxial nanocable without prior CNT functionalization. After functionalization with NH2 group, the CNT/silica coaxial nanocable has been employed as a three-dimensional support for loading ultra-high-density metal or hybrid nanoparticles (NPs) such as gold NPs, Au/Pt hybrid NPs, Pt hollow NPs, and Au/Ag core/shell NPs. Most importantly, it is found that the ultra-high-density Au/Pt NPs supported on coaxial nanocables (UASCN) could be used as enhanced materials for constructing electrochemical devices with high performance. Four model probe molecules (O-2, CH3OH, H2O2, and NH2NH2) have been investigated on UASCN-modified glassy carbon electrode (GCE). It was observed that the present UASCN exhibited high electrocatalytic activity toward diverse molecules and was a promising electrocatalyst for constructing electrochemical devices with high performance. For instance, the detection limit for H2O2 with a signal-to-noise ratio of 3 was found to be 0.3 mu M, which was lower than certain enzyme-based biosensors.
Resumo:
Reactions of Zn(BF4)(2) and pyridine-2,4-dicarboxylic acid (2,4-pydcH(2)) in the presence of 1,2-bis( 4-pyridyl) ethylene or 1,3-bis(4-pyridyl) propane under hydro(solvo) thermal conditions yielded two polymorphic metal-organic coordination polymers formulated as Zn-2(OH)(2)(2,4-pydc) (1 and 2). Polymorph 1 features a two-dimensional (2-D) layer-like structure that is constructed by 2,4-pydc ligands bridging between the Zn-OH-Zn double-chain units. Each single Zn-OH-Zn chain is composed of mu(2)-OH groups connecting trigonal bipyramidal and tetrahedral Zn centers. Polymorph 2 is a 3-D coordination polymer containing 2-D Zn-OH-Zn sheets that consist of mu(2)- and mu(3)-OH groups and trigonal bipyramidal Zn centers. The sheets are pillared by 2,4-pydc ligands to form an acentric structural architecture. 1 and 2 are rare examples that the two polymorphs exhibit a centrosymmetric 2-D coordination network and an acentric 3-D coordination network, respectively. The different structures lead to differences in photoluminescent properties and thermal stabilities for 1 and 2.
Resumo:
The spherical Lindquist type polyoxometalate, Mo6O192-, has been used as a noncoordinating anionic template for the construction of novel three-dimensional lanthanide-aromatic monocarboxylate dimer supramolecular networks [Ln(2)(DNBA)(4)(DMF)(8)][Mo6O19] (Ln = La 1, Ce 2, and Eu 3, DNBA = 3,5-dinitrobenzoate, DMF = dimethylformamide). The title compounds are characterized by elemental analyses, IR, and single-crystal X-ray diffractions. X-ray diffraction experiments reveal that two Ln(III) ions are bridged by four 3,5-dinitrobenzoate anions as asymmetrically bridging ligands, leading to dimeric cores, [Ln(2)(DNBA)(4)(DMF)(8)](2+); [Ln(2)(DNBA)(4)(DMF)(8)](2+) groups are joined together by pi-pi stacking interactions between the aromatic groups to form a two-dimensional grid-like network; the 2-D supramolecular layers are further extended into 3-D supramolecular networks with 1-D box-like channels by hydrogen-bonding interactions, in which hexamolybdate polyanions reside. The compounds represent the first examples of 3-D carboxylate-bridged lanthanide dimer supramolecular "host" networks formed by pi-pi stacking and hydrogen-bonding interactions encapsulating noncoordinating "guest" polyoxoanion species. The fluorescent activity of compound 3 is reported.
Resumo:
A series of 3,4-dimethyl-4-(3-hydroxyphenyl) piperidine opioid antagonists with varying substituents on the nitrogen were evaluated for their effect on food consumption in obese Zucker rats. In developing three-dimensional quantitative structure-activity relationship (3D-QSAR) studies for this series of opioid antagonists, different structure alignments have been tested to predict the anorectant activities. The interaction energies between molecules and the probe atom were then correlated with anorectant activity using partial least squares (PLS) method. The steric and electrostatic features of the 3D-QSAR were presented in the form of standard deviation coefficient contour maps of steric and electrostatic fields. The results showed that 3D-QSAR results are much better than the results obtained by 2D-QSAR.
Resumo:
The three-dimensional fluorescence spectrum was used to detect the changes in dissolved organic substances from the cultured Skeletonema costatum, Alexandrium tamarense, Alexandrium mimutum, Scrippsiella trochodea, Prorocentrum donghaiense and Prorocentrum micans. The result indicates that all of the microalgaes can produce FDOM in the growth courses. Diatom such as Skeletonema costatum can produce humic-like FDOM. However dinoflagellate can produce protein-like FDOM at exponential growth phase. When the algae grows into decadency phase, the intensity of humic-like and protein-like fluorescence augments rapidly, which may be due to a mass of FDOM realeased by the old or dead cell fragmentation and the degradation of bacteria by using non-FDOM. The fluorescent intensity of Alexandrium tamarense, Alexandrium mimutum, Prorocentrum donghaiense and Prorocentrum micans can reduce at anaphase of decadency phase because of the degradation of bacteria and light. The same genus of algae can produce similar FDOM, for example: Alexandrium tamarense, and Alexandrium mimutum, Prorocentrum donghaiense and Prorocentrum micans, but the positions of the fluorescence peaks are different.
Resumo:
We address the computational role that the construction of a complete surface representation may play in the recovery of 3--D structure from motion. We present a model that combines a feature--based structure--from- -motion algorithm with smooth surface interpolation. This model can represent multiple surfaces in a given viewing direction, incorporates surface constraints from object boundaries, and groups image features using their 2--D image motion. Computer simulations relate the model's behavior to perceptual observations. In a companion paper, we discuss further perceptual experiments regarding the role of surface reconstruction in the human recovery of 3--D structure from motion.
Resumo:
This thesis examines a complete design framework for a real-time, autonomous system with specialized VLSI hardware for computing 3-D camera motion. In the proposed architecture, the first step is to determine point correspondences between two images. Two processors, a CCD array edge detector and a mixed analog/digital binary block correlator, are proposed for this task. The report is divided into three parts. Part I covers the algorithmic analysis; part II describes the design and test of a 32$\time $32 CCD edge detector fabricated through MOSIS; and part III compares the design of the mixed analog/digital correlator to a fully digital implementation.
Resumo:
R. Marti, C. Rubin, E. Denton and R. Zwiggelaar, '2D-3D correspondence in mammography', Cybernetics and Systems 35 (1), 85-105 (2004)
Resumo:
The Red Sea exhibits complex hydrodynamic and biogeochemical dynamics, which vary both in time and space. These dynamics have been explored through the development and application of a 3-D ecosystem model. The simulation system comprises two off-line coupled submodels: the MIT General Circulation Model (MITgcm) and the European Regional Seas Ecosystem Model (ERSEM), both adapted for the Red Sea. The results from an annual simulation under climatological forcing are presented. Simulation results are in good agreement with satellite and in situ data illustrating the role of the physical processes in determining the evolution and variability of the Red Sea ecosystem. The model was able to reproduce the main features of the Red Sea ecosystem functioning, including the exchange with the Gulf of Aden, which is a major driving mechanism for the whole Red Sea ecosystem and the winter overturning taking place in the north. Some model limitations, mainly related to the dynamics of the extended reef system located in the southern part of the Red Sea, which is not currently represented in the model, still need to be addressed.
Resumo:
This paper is novel andreports on the in vitro establishment of 3-D cultures of human osteoblasts. These were evaluated for protein markers of bone cells. Sequentially alkaline phosphatase, calcium incorporation for matrix mineralisation and then finally osteocalcin expression were detected in cultures. The extracellular matrix was composed of type 1 collagen and as it mineralised, needle shaped crystals were often associated with matrix vesicles initiating mineralisation. In vivo implantation in nude mice showed progression of mineralisation from the inner region outward with peripheral cells in a non-mineralised matrix. Host vessels invaded the implanted cell area. The research has relevance to musculoskeletal tissue engineering.
Resumo:
We present results from three-dimensional protein folding simulations in the HP-model on ten benchmark problems. The simulations are executed by a simulated annealing-based algorithm with a time-dependent cooling schedule. The neighbourhood relation is determined by the pull-move set. The results provide experimental evidence that the maximum depth D of local minima of the underlying energy landscape can be upper bounded by D < n(2/3). The local search procedure employs the stopping criterion (In/delta)(D/gamma) where m is an estimation of the average number of neighbouring conformations, gamma relates to the mean of non-zero differences of the objective function for neighbouring conformations, and 1-delta is the confidence that a minimum conformation has been found. The bound complies with the results obtained for the ten benchmark problems. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A modification of liquid source misted chemical deposition process (LSMCD) with heating mist and substrate has developed, and this enabled to control mist penetrability and fluidity on sidewalls of three-dimensional structures and ensure step coverage. A modified LSMCD process allowed a combinatorial approach of Pb(Zr,Ti)O-3 (PZT) thin films and carbon nanotubes (CNTs) toward ultrahigh integration density of ferroelectric random access memories (FeRAMs). The CNTs templates were survived during the crystallization process of deposited PZT film onto CNTs annealed at 650 degrees C in oxygen ambient due to a matter of minute process, so that the thermal budget is quite small. The modified LSMCD process opens up the possibility to realize the nanoscale capacitor structure of ferroelectric PZT film with CNTs electrodes toward ultrahigh integration density FeRAMs.
Resumo:
CO hydrogenation is used as a model system to understand why multiphase catalysts are chemically important in heterogeneous catalysis. By including both adsorption and subsequent surface reactions, kinetic equations are derived with two fundamental properties, the chemisorption energies of C and O (Delta H-C and Delta H-O, respectively). By plotting the activity against Delta H-C and Delta H-O, a 3-D volcano surface is obtained. Because of the constraint between Delta H-C and Delta H-O on monophase systems, a maximum can be achieved. However, if multiphase systems are used, such a constraint can be released and the global maximum may be achieved.