Three dimensional fluorescence excitation-emission on matrix spectrum of dissolved organic substance in marine microalgaes growth process


Autoria(s): Ren Bao-wei; Zhao Wei-hong; Wang Jiang-tao; Wang Lu
Data(s)

01/05/2008

Resumo

The three-dimensional fluorescence spectrum was used to detect the changes in dissolved organic substances from the cultured Skeletonema costatum, Alexandrium tamarense, Alexandrium mimutum, Scrippsiella trochodea, Prorocentrum donghaiense and Prorocentrum micans. The result indicates that all of the microalgaes can produce FDOM in the growth courses. Diatom such as Skeletonema costatum can produce humic-like FDOM. However dinoflagellate can produce protein-like FDOM at exponential growth phase. When the algae grows into decadency phase, the intensity of humic-like and protein-like fluorescence augments rapidly, which may be due to a mass of FDOM realeased by the old or dead cell fragmentation and the degradation of bacteria by using non-FDOM. The fluorescent intensity of Alexandrium tamarense, Alexandrium mimutum, Prorocentrum donghaiense and Prorocentrum micans can reduce at anaphase of decadency phase because of the degradation of bacteria and light. The same genus of algae can produce similar FDOM, for example: Alexandrium tamarense, and Alexandrium mimutum, Prorocentrum donghaiense and Prorocentrum micans, but the positions of the fluorescence peaks are different.

The three-dimensional fluorescence spectrum was used to detect the changes in dissolved organic substances from the cultured Skeletonema costatum, Alexandrium tamarense, Alexandrium mimutum, Scrippsiella trochodea, Prorocentrum donghaiense and Prorocentrum micans. The result indicates that all of the microalgaes can produce FDOM in the growth courses. Diatom such as Skeletonema costatum can produce humic-like FDOM. However dinoflagellate can produce protein-like FDOM at exponential growth phase. When the algae grows into decadency phase, the intensity of humic-like and protein-like fluorescence augments rapidly, which may be due to a mass of FDOM realeased by the old or dead cell fragmentation and the degradation of bacteria by using non-FDOM. The fluorescent intensity of Alexandrium tamarense, Alexandrium mimutum, Prorocentrum donghaiense and Prorocentrum micans can reduce at anaphase of decadency phase because of the degradation of bacteria and light. The same genus of algae can produce similar FDOM, for example: Alexandrium tamarense, and Alexandrium mimutum, Prorocentrum donghaiense and Prorocentrum micans, but the positions of the fluorescence peaks are different.

Identificador

http://ir.qdio.ac.cn/handle/337002/6265

http://www.irgrid.ac.cn/handle/1471x/168000

Idioma(s)

英语

Fonte

Ren Baowei; Zhao Weihong; Wang Jiangtao; Wang Lu.Three dimensional fluorescence excitation-emission on matrix spectrum of dissolved organic substance in marine microalgaes growth process,SPECTROSCOPY AND SPECTRAL ANALYSIS,2008,28(5):1130-1134

Palavras-Chave #marine microalgaes #3-D fluorescence spectrum #protein-like fluorescence #humic-like fluorescence
Tipo

期刊论文