978 resultados para natural infection


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Parapoxvirus (PPV) are member of a genus in the family poxviridae which currently encompasses four species: the prototype orf virus (OV), bovine papular stomatitis virus (BPSV), pseudocowpox virus (PCPV) and parapoxvirus of New Zealand red deer (PVNZ). PPVs cause widespread, but localized diseases of small and large ruminants and they can also be transmitted to man. Knowledge of the molecular biology of PPV is still limited as compared to orthopoxviruses, especially vaccinia virus (VACV). The PPV genome displays a high G+C content and relatively small size for poxvirus. Coventional electron microscopy displays PPV virions with ovoid shape and slightly smaller in size than the brickshaped orthopoxviruses. The most striking feature, which readily enables identification of PPV, is a tubule-like structure that surrounds the particle in a spiral fashion. PPV genome organization and content is very similar to that of other poxviruses, the central region contain 88 genes which are present in all poxviruse, in contrast the terminal regions are variable and contain a set of genes unique to the genus PPV. Genes in the near-terminal regions of the genome are frequently not essential for growth in cultured cells encoding factors with important roles in virushost interactions including modulating host immune responses and determining host range. Recently it was suggested that the open reading frames (ORFs) 109 and 110 of the OV genome have a major role in determining species specificity during natural infection in sheep and goats. This hypothesis is based on the analysis of a few number of sequences of different sheep and goats viral isolates. PPV replicate into the cytoplasm of infected cells and produce three structurally different infectious particles: the intracellular mature virions (IMV), intracellular enveloped virions (IEV) and the extracellular enveloped virions (EEV). The vaccinia A33R and A34R hotologue proteins encoded by the ORFS 109 and 110 are expressed in the envelope of the IEV and EEV. The F1L immunodominant protein of orf virus is the major component of the surface tubule structure of the IMV and can post-translationaly insert into membranes via Cterminal, hydrofobic anchor sequence like its orthologue VACV H3L protein. Moreover the F1L protein binds to glycosaminoglycans on the cell surface and has an important role in IMV adsorption to mammalian cells. In this study we investigated the morphogenesis of the PPV through the construction of a mutant virus deleted of the F1L protein. A study of the deleted virus life cycle was conducted in different type of cells and its morphology was observed with electron microscopy. It was demonstared that F1L protein have important role in morphogenesis and infectivity. Moreover it is essential to determine the spiral fashion of the tubule like structure of the virion surface. Some pathogenetic aspects of the PPV infection were studied, in particular the protein implicated in the host range were analysed in detail. An experimental infection with OV and PCPV was conducted in goats and sheep. After infection, the severity of the lesions were comparable in both the animal species. The OV did not result in severe disease neither in sheep nor in goats, suggesting that host factors, rather than virus strain characteristics, may play an important role in the pathogenesis of the Parapoxvirus infections. The PCPV failed to produce any lesion in both sheep and goats, ruling out the possibility of any recombination between PCPV and OV during natural infection in these animal species. The phylogenetic analysis of the ORFs 109 and 110 from several goats and sheep viral isolates showed a clustering based on the antigenic content of the protein that was independent from species and geographic origin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Poxviruses are a family of double stranded DNA (dsDNA) viruses that cause disease in many species, both vertebrate and invertebrate. Their genomes range in size from 135 to 365 kbp and show conservation in both organization and content. In particular, the central genomic regions of the chordopoxvirus subfamily (those capable of infecting vertebrates) contain 88 genes which are present in all the virus species characterised to date and which mostly occur in the same order and orientation. In contrast, however, the terminal regions of the genomes frequently contain genes that are species or genera-specific and that are not essential for the growth of the virus in vitro but instead often encode factors with important roles in vivo including modulation of the host immune response to infection and determination of the host range of the virus. The Parapoxviruses (PPV), of which Orf virus is the prototypic species, represent a genus within the chordopoxvirus subfamily of Poxviridae and are characterised by their ability to infect ruminants and humans. The genus currently contains four recognised species of virus, bovine papular stomatitis virus (BPSV) and pseudocowpox virus (PCPV) both of which infect cattle, orf virus (OV) that infects sheep and goats, and parapoxvirus of red deer in New Zealand (PVNZ). The ORFV genome has been fully sequenced, as has that of BPSV, and is ~138 kb in length encoding ~132 genes. The vast majority of these genes allow the virus to replicate in the cytoplasm of the infected host cell and therefore encode proteins involved in replication, transcription and metabolism of nucleic acids. These genes are well conserved between all known genera of poxviruses. There is however another class of genes, located at either end of the linear dsDNA genome, that encode proteins which are non-essential for replication and generally dictate host range and virulence of the virus. The non-essential genes are often the most variable within and between species of virus and therefore are potentially useful for diagnostic purposes. Given their role in subverting the host-immune response to infection they are also targets for novel therapeutics. The function of only a relatively small number of these proteins has been elucidated and there are several genes whose function still remains obscure principally because there is little similarity between them and proteins of known function in current sequence databases. It is thought that by selectively removing some of the virulence genes, or at least neutralising the proteins in some way, current vaccines could be improved. The evolution of poxviruses has been proposed to be an adaptive process involving frequent events of gene gain and loss, such that the virus co-evolves with its specific host. Gene capture or horizontal gene transfer from the host to the virus is considered an important source of new viral genes including those likely to be involved in host range and those enabling the virus to interfere with the host immune response to infection. Given the low rate of nucleotide substitution, recombination can be seen as an essential evolutionary driving force although it is likely underestimated. Recombination in poxviruses is intimately linked to DNA replication with both viral and cellular proteins participate in this recombination-dependent replication. It has been shown, in other poxvirus genera, that recombination between isolates and perhaps even between species does occur, thereby providing another mechanism for the acquisition of new genes and for the rapid evolution of viruses. Such events may result in viruses that have a selective advantage over others, for example in re-infections (a characteristic of the PPV), or in viruses that are able to jump the species barrier and infect new hosts. Sequence data related to viral strains isolated from goats suggest that possible recombination events may have occurred between OV and PCPV (Ueda et al. 2003). The recombination events are frequent during poxvirus replication and comparative genomic analysis of several poxvirus species has revealed that recombinations occur frequently on the right terminal region. Intraspecific recombination can occur between strains of the same PPV species, but also interspecific recombination can happen depending on enough sequence similarity to enable recombination between distinct PPV species. The most important pre-requisite for a successful recombination is the coinfection of the individual host by different virus strains or species. Consequently, the following factors affecting the distribution of different viruses to shared target cells need to be considered: dose of inoculated virus, time interval between inoculation of the first and the second virus, distance between the marker mutations, genetic homology. At present there are no available data on the replication dynamics of PPV in permissive and non permissive hosts and reguarding co-infetions there are no information on the interference mechanisms occurring during the simultaneous replication of viruses of different species. This work has been carried out to set up permissive substrates allowing the replication of different PPV species, in particular keratinocytes monolayers and organotypic skin cultures. Furthermore a method to isolate and expand ovine skin stem cells was has been set up to indeep further aspects of viral cellular tropism during natural infection. The study produced important data to elucidate the replication dynamics of OV and PCPV virus in vitro as well as the mechanisms of interference that can arise during co-infection with different viral species. Moreover, the analysis carried on the genomic right terminal region of PCPV 1303/05 contributed to a better knowledge of the viral genes involved in host interaction and pathogenesis as well as to locate recombination breakpoints and genetic homologies between PPV species. Taken together these data filled several crucial gaps for the study of interspecific recombinations of PPVs which are thought to be important for a better understanding of the viral evolution and to improve the biosafety of antiviral therapy and PPV-based vectors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bei Menschen mit unreifem oder geschwächtem Immunsystem kann eine Infektion mit dem Humanen Cytomegalovirus (HCMV) zu schweren Erkrankungen führen. Hingegen kontrolliert das Immunsystem bei Gesunden die HCMV-Infektion fast vollständig. Wichtige Effektoren hierbei sind CD8-positive zytotoxische T-Zellen (CTLs). Um dieser Kontrolle entgegenzuwirken, exprimiert HCMV die als Immunevasine bekannten Proteine gpUS2, gpUS3, gpUS6 und gpUS11. Sie greifen an unterschiedlichen Stellen in die MHC-Klasse-I (MHC-I)-vermittelte Antigenpräsentation ein und schützen so infizierte Zellen vor der Erkennung durch CTLs. Zusätzlich waren auch den Tegumentproteinen pp65 und pp71 immunevasive Funktionen zugeschrieben worden, wobei jedoch über diese Funktionen bisher nur wenig bekannt war. Daher sollte im ersten Teil der vorliegenden Arbeit die Beteiligung von pp71 an der MHC-I-Immunevasion von HCMV-infizierten humanen Fibroblasten untersucht werden. Zu diesem Zweck wurden HCMV-Mutanten eingesetzt, die pp71 verstärkt exprimierten. Entgegen der postulierten immunevasiven Rolle von pp71 konnte zu keinem Zeitpunkt der Infektion ein inhibierender Effekt von pp71 auf die Antigenpräsentation infizierter Fibroblasten festgestellt werden. Sehr früh nach Infektion war sogar eine pp71-vermittelte Steigerung der Präsentation des HCMV-Proteins IE1 zu beobachten. Um zu prüfen, ob es auch während einer natürlichen Infektion zu einer Erhöhung der pp71-Expression und den damit verbundenen Effekten kommen kann, wurde untersucht, ob die Expression von pp71 durch Zellstress induzierbar ist. Dies erschien möglich, da der Leserahmen für pp71 von einer bizistronischen mRNA kodiert wird. Über die Erzeugung von Zellstress durch Serumentzug konnte zum ersten Mal gezeigt werden, dass die Expression des wichtigen viralen Transaktivators pp71 abhängig vom physiologischen Zustand der infizierten Zellen reguliert wird. Im zweiten Teil der vorliegenden Arbeit sollte die Rolle des Immunevasins gpUS3 näher beleuchtet werden. Sein Wirkmechanismus war, wie die Mechanismen der drei anderen Immunevasine gpUS2, gpUS6 und gpUS11, bereits ausführlicher untersucht worden. Der individuelle Beitrag von gpUS3 zur MHC-I-Immunevasion in infizierten Zellen sowie ein mögliches Zusammenspiel mit den anderen Immunevasinen waren hingegen noch zu erforschen. Hierzu wurden HCMV-Mutanten eingesetzt, die keines oder nur eines der Immunevasine exprimierten. Mit ihrer Hilfe konnte gezeigt werden, dass gpUS3 sehr früh nach Infektion überraschenderweise die Immunevasion in infizierten Fibroblasten behindert. Zu späteren Infektionszeitpunkten war dagegen ein immunevasiver Effekt von gpUS3 in Form einer Kooperation mit jeweils einem der drei anderen Immunevasine festzustellen. Aus diesen Ergebnissen ergibt sich die neue Hypothese, dass die Hauptaufgabe von gpUS3 im Rahmen der HCMV-Immunevasion in der Regulation der Funktionen der übrigen Immunevasine liegt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Central nervous system (CNS) infections in ruminant livestock, such as listeriosis, are of major concern for veterinary and public health. To date, no host-specific in vitro models for ruminant CNS infections are available. Here, we established and evaluated the suitability of organotypic brain-slices of ruminant origin as in vitro model to study mechanisms of Listeria monocytogenes CNS infection. Ruminants are frequently affected by fatal listeric rhombencephalitis that closely resembles the same condition occurring in humans. Better insight into host-pathogen interactions in ruminants is therefore of interest, not only from a veterinary but also from a public health perspective. Brains were obtained at the slaughterhouse, and hippocampal and cerebellar brain-slices were cultured up to 49 days. Viability as well as the composition of cell populations was assessed weekly. Viable neurons, astrocytes, microglia and oligodendrocytes were observed up to 49 days in vitro. Slice cultures were infected with L. monocytogenes, and infection kinetics were monitored. Infected brain cells were identified by double immunofluorescence, and results were compared to natural cases of listeric rhombencephalitis. Similar to the natural infection, infected brain-slices showed focal replication of L. monocytogenes and bacteria were predominantly observed in microglia, but also in astrocytes, and associated with axons. These results demonstrate that organotypic brain-slice cultures of bovine origin survive for extended periods and can be infected easily with L. monocytogenes. Therefore, they are a suitable model to study aspects of host-pathogen interaction in listeric encephalitis and potentially in other neuroinfectious diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report describes the clinical presentation, diagnosis and treatment of a cat with vegetative valvular endocarditis temporally associated with natural infection with Bartonella henselae. Lethargy, abnormal gait and weakness were the main clinical signs that resulted in referral for diagnostic evaluation. Using a novel and sensitive culture approach, B henselae was isolated from the blood. Following antibiotic therapy there was total resolution of clinical signs, the heart murmur, the valvular lesion by echocardiography, and no Bartonella species was isolated or amplified from a post-treatment blood culture. In conjunction with previous case reports, infective endocarditis can be associated with natural B henselae infection in cats; however, early diagnosis and treatment may result in a better prognosis than previously reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tick-borne encephalitis virus (TBEV) is the causative agent of human TBE, a severe infection that can cause long-lasting neurologic sequelae. Langat virus (LGTV), which is closely related to TBEV, has a low virulence for human hosts and has been used as a live vaccine against TBEV. Tick-borne encephalitis by natural infection of LGTV in humans has not been described, but one of 18,500 LGTV vaccinees developed encephalitis. The pathogenetic mechanisms of TBEV are poorly understood and, currently, no effective therapy is available. We developed an infant rat model of TBE using LGTV as infective agent. Infant Wistar rats were inoculated intracisternally with 10 focus-forming units of LGTV and assessed for clinical disease and neuropathologic findings at Days 2, 4, 7, and 9 after infection. Infection with LGTV led to gait disturbance, hypokinesia, and reduced weight gain or weight loss. Cerebrospinal fluid concentrations of RANTES, interferon-γ, interferon-β, interleukin-6, and monocyte chemotactic protein-1 were increased in infected animals. The brains of animals with LGTV encephalitis exhibited characteristic perivascular inflammatory cuffs and glial nodules; immunohistochemistry documented the presence of LGTV in the thalamus, hippocampus, midbrain, frontal pole, and cerebellum. Thus, LGTV meningoencephalitis in infant rats mimics important clinical and histopathologic features of human TBE. This new model provides a tool to investigate disease mechanisms and to evaluate new therapeutic strategies against encephalitogenic flaviviruses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SUMMARY The Porcine Reproductive and Respiratory Syndrome (PRRS) virus is one of the most spread pathogens in swine herds all over the world and responsible for a reproductive and respiratory syndrome that causes severe heath and economical problems. This virus emerged in late 1980’s but although about 30 years have passed by, the knowledge about some essential facets related to the features of the virus (pathogenesis, immune response, and epidemiology) seems to be still incomplete. Taking into account that the development of modern vaccines is based on how innate and acquire immunity react, a more and more thorough knowledge on the immune system is needed, in terms of molecular modulation/regulation of the inflammatory and immune response upon PRRSV infection. The present doctoral thesis, which is divided into 3 different studies, is aimed to increase the knowledge about the interaction between the immune system and the PRRS virus upon natural infection. The objective of the first study entitled “Coordinated immune response of memory and cytotoxic T cells together with IFN-γ secreting cells after porcine reproductive and respiratory syndrome virus (PRRSV) natural infection in conventional pigs” was to evaluate the activation and modulation of the immune response in pigs naturally infected by PRRSV compared to an uninfected control group. The course of viremia was evaluated by PCR, the antibody titres by ELISA, the number of IFN-γ secreting cells (IFN- SC) by an ELISPOT assay and the immunophenotyping of some lymphocyte subsets (cytotoxic cells, memory T lymphocytes and cytotoxic T lymphocytes) by flow cytometry. The results showed that the activation of the cell-mediated immune response against PRRSV is delayed upon infection and that however the levels of IFN-γ SC and lymphocyte subsets subsequently increase over time. Furthermore, it was observed that the course of the different immune cell subsets is time-associated with the levels of PRRSV-specific IFN-γ SC and this can be interpreted based on the functional role that such lymphocyte subsets could have in the specific production/secretion of the immunostimulatory cytokine IFN-γ. In addition, these data support the hypothesis that the age of the animals upon the onset of infection or the diverse immunobiological features of the field isolate, as typically hypothesized during PRRSV infection, are critical conditions able to influence the qualitative and quantitative course of the cell-mediated immune response during PRRSV natural infection. The second study entitled “Immune response to PCV2 vaccination in PRRSV viremic piglets” was aimed to evaluate whether PRRSV could interfere with the activation of the immune response to PCV2 vaccination in pigs. In this trial, 200 pigs were divided into 2 groups: PCV2-vaccinated (at 4 weeks of age) and PCV2-unvaccinated (control group). Some piglets of both groups got infected by PRRSV, as determined by PRRSV viremia detection, so that 4 groups were defined as follows: PCV2 vaccinated - PRRSV viremic PCV2 vaccinated - PRRSV non viremic PCV2 unvaccinated - PRRSV viremic PCV2 unvaccinated - PRRSV non viremic The following parameters were evaluated in the 4 groups: number of PCV2-specific IFN-γ secreting cells, antibody titres by ELISA and IPMA. Based on the immunological data analysis, it can be deduced that: 1) The low levels of antibodies against PCV2 in the PCV2-vaccinated – PRRSV-viremic group at vaccination (4 weeks of age) could be related to a reduced colostrum intake influenced by PRRSV viremia. 2) Independently of the viremia status, serological data of the PCV2-vaccinated group by ELISA and IPMA does not show statistically different differences. Consequently, it can be be stated that, under the conditions of the study, PRRSV does not interfere with the antibody response induced by the PCV2 vaccine. 3) The cell-mediated immune response in terms of number of PCV2-specific IFN-γ secreting cells in the PCV2-vaccinated – PRRSV-viremic group seems to be compromised, as demonstrated by the reduction of the number of IFN-γ secreting cells after PCV2 vaccination, compared to the PCV2-vaccinated – PRRSV-non-viremic group. The data highlight and further support the inhibitory role of PRRSV on the development and activation of the immune response and highlight how a natural infection at early age can negatively influence the immune response to other pathogens/antigens. The third study entitled “Phenotypic modulation of porcine CD14+ monocytes, natural killer/natural killer T cells and CD8αβ+ T cell subsets by an antibody-derived killer peptide (KP)” was aimed to determine whether and how the killer peptide (KP) could modulate the immune response in terms of activation of specific lymphocyte subsets. This is a preliminary approach also aimed to subsequently evaluate such KP with a potential antivural role or as adjuvant. In this work, pig peripheral blood mononuclear cells (PBMC) were stimulated with three KP concentrations (10, 20 and 40 g/ml) for three time points (24, 48 and 72 hours). TIME POINTS (hours) KP CONCENTRATIONS (g/ml) 24 0-10-20-40 48 0-10-20-40 72 0-10-20-40 By using flow cytometry, the qualitative and quantitative modulation of the following immune subsets was evaluated upon KP stimulation: monocytes, natural killer (NK) cells, natural killer T (NKT) cells, and CD4+ and CD8α/β+ T lymphocyte subsets. Based on the data, it can be deduced that: 1) KP promotes a dose-dependent activation of monocytes, particularly after 24 hours of stimulation, by inducing a monocyte phenotypic and maturation shift mainly involved in sustaining the innate/inflammatory response. 2) KP induces a strong dose-dependent modulation of NK and NKT cells, characterized by an intense increase of the NKT cell fraction compared to NK cells, both subsets involved in the antibody-dependent cell cytotoxicity (ADCC). The increase is observed especially after 24 hours of stimulation. 3) KP promotes a significant activation of the cytotoxic T lymphocyte subset (CTL). 4) KP can modulate both the T helper and T cytotoxic phenotype, by inducing T helper cells to acquire the CD8α thus becoming doube positive cells (CD4+CD8+) and by inducing CTL (CD4-CD8+high) to acquire the double positive phenotype (CD4+CD8α+high). Therefore, KP may induce several effects on different immune cell subsets. For this reason, further research is needed aimed at characterizing each “effect” of KP and thus identifying the best use of the decapeptide for vaccination practice, therapeutic purposes or as vaccine adjuvant. RIASSUNTO Il virus della PRRS (Porcine Reproductive Respiratory Syndrome) è uno dei più diffusi agenti patogeni negli allevamenti suini di tutto il mondo, responsabile di una sindrome riproduttiva e respiratoria causa di gravi danni ad impatto sanitario ed economico. Questo virus è emerso attorno alla fine degli anni ’80 ma nonostante siano passati circa una trentina di anni, le conoscenze su alcuni punti essenziali che riguardano le caratteristiche del virus (patogenesi, risposta immunitaria, epidemiologia) appaiono ancora spesso incomplete. Considerando che lo sviluppo dei vaccini moderni è basato sui principi dell’immunità innata e acquisita è essenziale una sempre più completa conoscenza del sistema immunitario inteso come modulazione/regolazione molecolare della risposta infiammatoria e immunitaria in corso di tale infezione. Questo lavoro di tesi, suddiviso in tre diversi studi, ha l’intento di contribuire all’aumento delle informazioni riguardo l’interazione del sistema immunitario, con il virus della PRRS in condizioni di infezione naturale. L’obbiettivo del primo studio, intitolato “Associazione di cellule memoria, cellule citotossiche e cellule secernenti IFN- nella risposta immunitaria in corso di infezione naturale da Virus della Sindrome Riproduttiva e Respiratoria del Suino (PRRSV)” è stato di valutare l’attivazione e la modulazione della risposta immunitaria in suini naturalmente infetti da PRRSV rispetto ad un gruppo controllo non infetto. I parametri valutati sono stati la viremia mediante PCR, il titolo anticorpale mediante ELISA, il numero di cellule secernenti IFN- (IFN- SC) mediante tecnica ELISPOT e la fenotipizzazione di alcune sottopopolazioni linfocitarie (Cellule citotossiche, linfociti T memoria e linfociti T citotossici) mediante citofluorimetria a flusso. Dai risultati ottenuti è stato possibile osservare che l’attivazione della risposta immunitaria cellulo-mediata verso PRRSV appare ritardata durante l’infezione e che l’andamento, in termini di IFN- SC e dei cambiamenti delle sottopopolazioni linfocitarie, mostra comunque degli incrementi seppur successivi nel tempo. E’ stato inoltre osservato che gli andamenti delle diverse sottopopolazioni immunitarie cellulari appaiono temporalmente associati ai livelli di IFN- SC PRRSV-specifiche e ciò potrebbe essere interpretato sulla base del ruolo funzionale che tali sottopopolazioni linfocitarie potrebbero avere nella produzione/secrezione specifica della citochina immunoattivatrice IFN-. Questi dati inoltre supportano l’ipotesi che l’età degli animali alla comparsa dell’infezione o, come tipicamente ipotizzato nell’infezione da PRRSV, le differenti caratteristiche immunobiologiche dell’isolato di campo, sia condizioni critiche nell’ influenzare l’andamento qualitativo e quantitativo della risposta cellulo-mediata durante l’infezione naturale da PRRSV. Il secondo studio, dal titolo “Valutazione della risposta immunitaria nei confronti di una vaccinazione contro PCV2 in suini riscontrati PRRSV viremici e non viremici alla vaccinazione” ha avuto lo scopo di valutare se il virus della PRRS potesse andare ad interferire sull’attivazione della risposta immunitaria indotta da vaccinazione contro PCV2 nel suino. In questo lavoro sono stati arruolati 200 animali divisi in due gruppi, PCV2 Vaccinato (a 4 settimane di età) e PCV2 Non Vaccinato (controllo negativo). Alcuni suinetti di entrambi i gruppi, si sono naturalmente infettati con PRRSV, come determinato con l’analisi della viremia da PRRSV, per cui è stato possibile creare quattro sottogruppi, rispettivamente: PCV2 vaccinato - PRRSV viremico PCV2 vaccinato - PRRSV non viremico PCV2 non vaccinato - PRRSV viremico PCV2 non vaccinato - PRRSV non viremico Su questi quattro sottogruppi sono stati valutati i seguenti parametri: numero di cellule secernenti IFN- PCV2 specifiche, ed i titoli anticorpali mediante tecniche ELISA ed IPMA. Dall’analisi dei dati immunologici derivati dalle suddette tecniche è stato possibile dedurre che:  I bassi valori anticorpali nei confronti di PCV2 del gruppo Vaccinato PCV2-PRRSV viremico già al periodo della vaccinazione (4 settimane di età) potrebbero essere messi in relazione ad una ridotta assunzione di colostro legata allo stato di viremia da PRRSV  Indipendentemente dallo stato viremico, i dati sierologici del gruppo vaccinato PCV2 provenienti sia da ELISA sia da IPMA non mostrano differenze statisticamente significative. Di conseguenza è possibile affermare che in questo caso PRRSV non interferisce con la risposta anticorpale promossa dal vaccino PCV2.  La risposta immunitaria cellulo-mediata, intesa come numero di cellule secernenti IFN- PCV2 specifiche nel gruppo PCV2 vaccinato PRRS viremico sembra essere compromessa, come viene infatti dimostrato dalla diminuzione del numero di cellule secernenti IFN- dopo la vaccinazione contro PCV2, comparata con il gruppo PCV2 vaccinato- non viremico. I dati evidenziano ed ulteriormente sostengono il ruolo inibitorio del virus della PRRSV sullo sviluppo ed attivazione della risposta immunitaria e come un infezione naturale ad età precoci possa influenzare negativamente la risposta immunitaria ad altri patogeni/antigeni. Il terzo studio, intitolato “Modulazione fenotipica di: monociti CD14+, cellule natural killer (NK), T natural killer (NKT) e sottopopolazioni linfocitarie T CD4+ e CD8+ durante stimolazione con killer peptide (KP) nella specie suina” ha avuto come scopo quello di stabilire se e come il Peptide Killer (KP) potesse modulare la risposta immunitaria in termini di attivazione di specifiche sottopopolazioni linfocitarie. Si tratta di un approccio preliminare anche ai fini di successivamente valutare tale KP in un potenziale ruolo antivirale o come adiuvante. In questo lavoro, periferal blood mononuclear cells (PBMC) suine sono state stimolate con KP a tre diverse concentrazioni (10, 20 e 40 g/ml) per tre diversi tempi (24, 48 e 72 ore). TEMPI DI STIMOLAZIONE (ore) CONCENTRAZIONE DI KP (g/ml) 24 0-10-20-40 48 0-10-20-40 72 0-10-20-40 Mediante la citometria a flusso è stato dunque possibile analizzare il comportamento qualitativo e quantitativo di alcune sottopopolazioni linfocitarie sotto lo stimolo del KP, tra cui: monociti, cellule Natural Killer (NK), cellule T Natural Killer (NKT) e linfociti T CD4 e CD8+. Dai dati ottenuti è stato possibile dedurre che: 1) KP promuove un’attivazione dei monociti dose-dipendente in particolare dopo 24 ore di stimolazione, inducendo uno “shift” fenotipico e di maturazione monocitaria maggiormente coinvolto nel sostegno della risposta innata/infiammatoria. 2) KP induce una forte modulazione dose-dipendente di cellule NK e NKT con un forte aumento della frazione delle cellule NKT rispetto alle NK, sottopopolazioni entrambe coinvolte nella citotossicità cellulare mediata da anticorpi (ADCC). L’aumento è riscontrabile soprattutto dopo 24 ore di stimolazione. 3) KP promuove una significativa attivazione della sottopopolazione del linfociti T citotossici (CTL). 4) Per quanto riguarda la marcatura CD4+/CD8+ è stato dimostrato che KP ha la capacità di modulare sia il fenotipo T helper che T citotossico, inducendo le cellule T helper ad acquisire CD8 diventando quindi doppio positive (CD4+CD8+) ed inducendo il fenotipo CTL (CD4-CD8+high) ad acquisire il fenotipo doppio positivo (CD4+CD8α+high). Molti dunque potrebbero essere gli effetti che il decapeptide KP potrebbe esercitare sulle diverse sottopopolazioni del sistema immunitario, per questo motivo va evidenziata la necessità di impostare e attuare nuove ricerche che portino alla caratterizzazione di ciascuna “abilità” di KP e che conducano successivamente alla scoperta del migliore utilizzo che si possa fare del decapeptide sia dal punto di vista vaccinale, terapeutico oppure sotto forma di adiuvante vaccinale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introdução: A leishmaniose visceral (LV) é um importante problema de saúde pública no Brasil, com cerca 3000 mil casos notificados anualmente. Nos últimos anos, a LV tem ampliado sua distribuição em vários estados do país, associada principalmente aos processos socioambientais, antrópicos e migratórios. A LV é causada pela infecção com Leishmania infantum chagasi, transmitida, principalmente, por Lutzomyia longipalpis (Diptera: Psychodidae). Este flebotomíneo apresenta ampla distribuição nas Américas, todavia, evidências sugerem que se constitui em um complexo de espécies crípticas. A dinâmica de transmissão da LV é modulada por fatores ecológicos locais que influenciam a interação entre populações do patógeno, do vetor e dos hospedeiros vertebrados. Portanto, o estudo das variáveis associadas a esta interação pode contribuir para elucidar aspectos dos elos epidemiológicos e contribuir para a tomada de decisões em saúde pública. Objetivo: Avaliar parâmetros relacionados à capacidade vetorial da população de Lu. longipalpis presente em área urbana do município de Panorama, estado de São Paulo. Métodos: Foram realizadas capturas mensais durante 48 meses para avaliar a distribuição espaço-temporal de Lu. longipalpis e investigar a circulação de Le. i. chagasi. Também foram realizados os seguintes experimentos com o vetor: captura-marcação-soltura-recaptura para estimar a sobrevida da população e a duração do seu ciclo gonotrófico, a atratividade dos hospedeiros mais frequentes em áreas urbanas, a proporção de repasto em cão, infecção experimental e competência vetorial. Resultados: Observou-se que no município de Panorama, Lu. longipalpis apresentou as frequências mais elevadas na estação chuvosa (entre outubro e março), maior densidade em áreas com presença de vegetação e criação de animais domésticos, locais aonde também foi demonstrada a circulação natural de espécimes de Lu. longipalpis infectados com Le. i. chagasi. Além disto, foi corroborado que a população de Lu. longipalpis apresentou hábito hematofágico eclético, altas taxas de sobrevivência e que foi competente para transmitir o agente da LV. Nos experimentos de laboratório foi evidenciada a heterogeneidade na infecção de fêmeas de Lu. longipalpis desafiadas a se alimentarem em cães comprovadamente infectados por L. i. chagasi e o rápido desenvolvimento do parasita neste vetor natural. Conclusões. As observações do presente estudo corroboram a capacidade vetora de Lu. longipalpis para transmitir a Le. i. chagasi e ressaltam a importância da espécie na transmissão do agente etiológico da LV. Ações de manejo ambiental, educação e promoção à saúde são recomendadas às autoridades municipais para diminuir o risco potencial de infecção na população humana e canina, considerando-se o elevado potencial vetor de Lu. longipalpis e a presença de condições que favorecem a interação dos componentes da tríade epidemiológica da LV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: This study was aimed at evaluating the clinical protection, the level of Porcine circovirus type 2 (PCV2) viremia and the immune response (antibodies and IFN-γ secreting cells (SC)) in piglets derived from PCV2 vaccinated sows and themselves vaccinated against PCV2 at different age, namely at 4, 6 and 8 weeks. The cohort study has been carried out over three subsequent production cycles (replicates). At the start/enrolment, 46 gilts were considered at first mating, bled and vaccinated. At the first, second and third farrowing, dams were bled and re-vaccinated at the subsequent mating after weaning piglets. Overall 400 piglets at each farrowing (first, second and third) were randomly allocated in three different groups (100 piglets/group) based on the timing of vaccination (4, 6 or 8 weeks of age). A fourth group was kept non-vaccinated (controls). Piglets were vaccinated intramuscularly with one dose (2 mL) of a commercial PCV2a-based subunit vaccine (Porcilis® PCV). Twenty animals per group were bled at weaning and from vaccination to slaughter every 4 weeks for the detection of PCV2 viremia, humoral and cell-mediated immune responses. Clinical signs and individual treatments (morbidity), mortality, and body weight of all piglets were recorded. RESULTS: All vaccination schemes (4, 6 and 8 weeks of age) were able to induce an antibody response and IFN-γ SC. The highest clinical and virological protection sustained by immune reactivity was observed in pigs vaccinated at 6 weeks of age. Overall, repeated PCV2 vaccination in sows at mating and the subsequent higher levels of maternally derived antibodies did not significantly interfere with the induction of both humoral and cell-mediated immunity in their piglets after vaccination. CONCLUSIONS: The combination of vaccination in sows at mating and in piglets at 6 weeks of age was more effective for controlling PCV2 natural infection, than other vaccination schemas, thus sustaining that some interference of MDA with the induction of an efficient immune response could be considered. In conclusion, optimal vaccination strategy needs to balance the levels of passive immunity, the management practices and timing of infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The hepatitis C virus (HCV) is able to persist as a chronic infection, which can lead to cirrhosis and liver cancer. There is evidence that clearance of HCV is linked to strong responses by CD8 cytotoxic T lymphocytes (CTLs), suggesting that eliciting CTL responses against HCV through an epitope-based vaccine could prove an effective means of immunization. However, HCV genomic plasticity as well as the polymorphisms of HLA I molecules restricting CD8 T-cell responses challenges the selection of epitopes for a widely protective vaccine. Here, we devised an approach to overcome these limitations. From available databases, we first collected a set of 245 HCV-specific CD8 T-cell epitopes, all known to be targeted in the course of a natural infection in humans. After a sequence variability analysis, we next identified 17 highly invariant epitopes. Subsequently, we predicted the epitope HLA I binding profiles that determine their potential presentation and recognition. Finally, using the relevant HLA I-genetic frequencies, we identified various epitope subsets encompassing 6 conserved HCV-specific CTL epitopes each predicted to elicit an effective T-cell response in any individual regardless of their HLA I background. We implemented this epitope selection approach for free public use at the EPISOPT web server. © 2013 Magdalena Molero-Abraham et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

American visceral leishmaniasis is a zoonosis caused by Leishmania infantum and transmitted by the bite of the sand flies Lutzomia longipalpis.The main domestic reservoir is the dog, while foxes and opposums are the known wild reservoirs. However, identification of natural infections with L. infantum in rodents appears for need of investigating the participation of these rodents how source of infection of the parasite. In the present work the Leishmania infantum infection was investigated in rodents captured in Rio Grande do Norte, aiming at to offer subsidies to the understanding of the epidemic chains of LVA in the State. Thirteen Galea spixii were distributed in four groups, being G1 the group control with four animals and the others, G2, G3 and G4, with three animals each. Those animals were intraperitoneally inoculated with 107 promastigotas of L. infantum and accompanied for, respectively, 30, 90 and 180 days. Weekly the animals were monitored as for the corporal weight and rectal temperature. At the end of each stipulated period the animals were killed. Blood were used for determination of the parameters biochemical and haematological, PCR, ELISA, microscopic examination and cultivation in NNN medium. Liver, spleen and lymph node were used in Giemsa-stained impression and cultivation in NNN medium. Liver and spleen fragments were still used in PCR and histopathological, respectively. At the same time 79 rodents of the species Rattus rattus, Bolomys lasiurus, Oligoryzomys nigripis, Oryzomys subflavus and Trichomys apereoides were captured in the Municipal districts of Brejinho, Campo Grande, Coronel Ezequiel, Passa e Fica and Vázea for identification of natural infection with L. infantum. Evidence of infection was checked by direct examination of Giemsa-stained impression of liver, spleen and blood and culture of these tissues in NNN medium. Antibodies were researched by ELISA. They were not found differences among the weigh corporal final, rectal temperature and biochemical and haematological parameters of the Galea spixii controls and infected. The rectal temperature of the animals varied from 36OC to 40OC. For the first time values of the haematocrit (33,6% to 42,8%), hemoglobin (10,2 to 14,5g/dl), erythrocyts number (4,67x106 to 6,90x106/mm3), total leukocytes (0,9x103 to 9,2x103/mm3), platelets (49x103 to 509x103/mm3) total proteins (1,56 to 6,06 g/dl), albumin (1,34 to 3,05 g/dl) and globulins (0,20 to 3,01 g/dl) of the Galea spixii were determined. The lymphocytes were the most abundant leucocytes. Infection for L. infantum was diagnosed in two animals euthanasied 180 days after the infection. In one of the animals was also identified antibodies anti-Leishmania. The parasite was not found in none of the five other species of rodents captured. Galea spixii are resistant to the infection for L. infantum and they are not good models for the study for visceral leishmaniose, although they can act as infection sources. More studies are necessary to determine the paper of the rodents in the epidemic chain of transmission of the visceral leishmaniose in the State of Rio Grande do Norte

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Serosurveillance is a powerful tool fundamental to understanding infectious disease dynamics. The presence of virus neutralising antibody (VNAb) in sera is considered the best evidence of infection, or indeed vaccination, and the gold standard serological assay for their detection is the virus neutralisation test (VNT). However, VNTs are labour intensive, costly and time consuming. In addition, VNTs for the detection of antibodies to highly pathogenic viruses require the use of high containment facilities, restricting the application of these assays to the few laboratories with adequate facilities. As a result, robust serological data on such viruses are limited. In this thesis I develop novel VNTs for the detection of VNAb to two important, highly pathogenic, zoonotic viruses; rabies and Rift Valley fever virus (RVFV). The pseudotype-based neutralisation test developed in this study allows for the detection of rabies VNAb without the requirement for high containment facilities. This assay was utilised to investigate the presence of rabies VNAb in animals from a variety of ecological settings. In this thesis I present evidence of natural rabies infection in both domestic dogs and lions from rabies endemic settings. The assay was further used to investigate the kinetics of VNAb response to rabies vaccination in a cohort of free-roaming dogs. The RVFV neutralisation assay developed herein utilises a recombinant luciferase expressing RVFV, which allows for rapid, high-throughput serosurveillance of this important neglected pathogen. In this thesis I present evidence of RVFV infection in a variety of domestic and wildlife species from Northern Tanzania, in addition to the detection of low-level transmission of RVFV during interepidemic periods. Additionally, the investigation of a longitudinal cohort of domestic livestock also provided evidence of rapid waning of RVF VNAb following natural infection. Collectively, the serological data presented in this thesis are consistent with existing data in the literature generated using the gold standard VNTs. Increasing the availability of serological assays will allow the generation of robust serological data, which are imperative to enhancing our understanding of the complex, multi-host ecology of these two viruses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two passive methods in the assessment of intradomiciliary infestation by Rhodnius ecuadoriensis were tested: (i) the Gomes Nuñez sensor box (GN), (ii) sheets of white typing paper and (iii) one active timed manual method. The study was carried out in the Alto Chicama River Valley, Province of Gran Chimú, Department of La Libertad. The study design consisted of an initial searching of triatomines inside of the domestic environment by the manual capture active procedure (man/hour) covering all the studied houses. Then, matched pairs of GN boxes and paper sheets were simultaneously installed in the bedrooms of 207 households distributed in 19 localities. A comparative prospective trial of these passive detection devices were monitored at 2, 4 and, finally 6 months follow-up. Parasitological Trypanosoma rangeli and/or T. cruzi infections were investigated in two houses with high level of infestation by R. ecuadoriensis.16.9% of the 207 households investigated by an initial active manual method were infested with R. ecuadoriensis. The proportion of infested houses fluctuated from 6.2 to 55.5% amongst the 19 localities investigated. T. rangeli natural infection was detected in R.ecuadoriensis specimens collected in two households. Parasite rates in the bugs ranged from 16.6 to 21.7% respectively. The most striking fact was an average rate of salivary gland infection ranging from 7.4 to 8.3%. At the end of the sixth month period, a cumulative incidence of 31.4% of positive GN boxes against 15.9% for paper sheets was recorded. All three methods combined detected domestic infestation in 129 (62.3%) of the 207 houses studied in the 19 localities. The range of houses infested varies from 6.7% to 92.9%. In areas with low bug density infestation rates, the methodology experienced in our studies, seems to be the best choice for investigations on domestic R. ecuadoriensis populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Faculdade de Medicina, Programa de Pós-Graduação em Medicina Tropical, 2016.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies on natural infection by Leishmania spp of sandflies collected in endemic and nonendemic areas can provide important information on the distribution and intensity of the transmission of these parasites. This study sought to investigate the natural infection by Leishmania in wild female sandflies. The specimens were caught in the city of Corumbá, state of Mato Grosso do Sul (Brazil) between October 2012-March 2014, and dissected to investigate flagellates and/or submitted to molecular analysis to detect Leishmania DNA. A total of 1,164 females (77.56% of which were Lutzomyia cruzi ) representing 11 species were investigated using molecular analysis; 126 specimens of Lu. cruzi were dissected and also submitted to molecular analysis. The infection rate based on the presence of Leishmania DNA considering all the sandfly species analysed was 0.69%; only Leishmania (Leishmania) amazonensis was identified in Lu. cruzi by the molecular analysis. The dissections were negative for flagellates. This is the first record of the presence of L. (L.) amazonensis DNA in Lu. cruzi, and the first record of this parasite in this area. These findings point to the need for further investigation into the possible role of this sandfly as vector of this parasite.