995 resultados para mixed-conducting membrane


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquaporins are integral membrane proteins of the tonoplast and the plasma membrane that facilitate the passage of water through these membranes. Because of their potentially important role in regulating water flow in plants, studies documenting aquaporin gene expression in specialized tissues involved in water and solute transport are important. We used in situ hybridization to examine the expression pattern of the tonoplast aquaporin ZmTIP1 in different organs of maize (Zea mays L.). This tonoplast water channel is highly expressed in the root epidermis, the root endodermis, the small parenchyma cells surrounding mature xylem vessels in the root and the stem, phloem companion cells and a ring of cells around the phloem strand in the stem and the leaf sheath, and the basal endosperm transfer cells in developing kernels. We postulate that the high level of expression of ZmTIP1 in these tissues facilitates rapid flow of water through the tonoplast to permit osmotic equilibration between the cytosol and the vacuolar content, and to permit rapid transcellular water flow through living cells when required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously, synaptic activity in the spinal cord of adult mammals was attributed exclusively to chemical neurotransmission. In this study, evidence was obtained for the existence, relative abundance, and widespread distribution of "mixed" (chemical and electrical) synapses on neurons throughout the spinal cords of adult mammals. Using combined confocal microscopy and "grid-mapped freeze fracture," 36 mixed synapses containing 88 "micro" gap junctions (median = 45 connexons) were found and mapped to 33 interneurons and motor neurons in Rexed laminae III-IX in cervical, thoracic, and lumbosacral spinal cords of adult male and female rats. Gap junctions were adjacent to presumptive active zones, where even small gap junctions would be expected to increase synaptic efficacy. Two morphological types of mixed synapse were discerned. One type contained distinctive active zones consisting of "nested" concentric toroidal deformations of pre- and postsynaptic membranes, which, because of their unusual topology, were designated as "synaptic sombreros." A second type had gap junctions adjacent to active zones consisting of broad, flat, shallow indentations of the plasma membrane. Morphometric analysis indicates that mixed synapses correspond to 3-5% of all synapses on the somata and proximal dendrites, but, because of their subcellular location and morphology, they could represent 30-100% of excitatory synapses. The relative abundance of mixed synapses on several classes of neurons in spinal cords of adult rats suggests that mixed synapses provide important but previously unrecognized pathways for bidirectional communication between neurons in the mammalian central nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human immunodeficiency virus type 1 (HIV-1) matrix protein forms a structural shell associated with the inner viral membrane and performs other essential functions throughout the viral life cycle. The crystal structure of the HIV-1 matrix protein, determined at 2.3 angstrom resolution, reveals that individual matrix molecules are composed of five major helices capped by a three-stranded mixed beta-sheet. Unexpectedly, the protein assembles into a trimer in three different crystal lattices, burying 1880 angstrom2 of accessible surface area at the trimer interfaces. Trimerization appears to create a large, bipartite membrane binding surface in which exposed basic residues could cooperate with the N-terminal myristoyl groups to anchor the protein on the acidic inner membrane of the virus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome oxidase is a membrane protein complex that catalyzes reduction of molecular oxygen to water and utilizes the free energy of this reaction to generate a transmembrane proton gradient during respiration. The electron entry site in subunit II is a mixed-valence dinuclear copper center in enzymes that oxidize cytochrome c. This center has been lost during the evolution of the quinoloxidizing branch of cytochrome oxidases but can be restored by engineering. Herein we describe the crystal structures of the periplasmic fragment from the wild-type subunit II (CyoA) of Escherichia coli quinol oxidase at 2.5-A resolution and of the mutant with the engineered dinuclear copper center (purple CyoA) at 2.3-A resolution. CyoA is folded as an 11-stranded mostly antiparallel beta-sandwich followed by three alpha-helices. The dinuclear copper center is located at the loops between strands beta 5-beta 6 and beta 9-beta 10. The two coppers are at a 2.5-A distance and symmetrically coordinated to the main ligands that are two bridging cysteines and two terminal histidines. The residues that are distinct in cytochrome c and quinol oxidases are around the dinuclear copper center. Structural comparison suggests a common ancestry for subunit II of cytochrome oxidase and blue copper-binding proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyclonal antibodies were generated against a 9-amino acid, synthetic peptide corresponding to the selectivity filter in the pore region of K(+)-channel proteins. The sequence of amino acids in the ion-conducting pore region of K+ channels is the only highly conserved region of members of this protein family. The objectives of the present work were (i) to determine whether the anti-channel pore peptide antibody was immunoreactive with known K(+)-channel proteins and (ii) to demonstrate the usefulness of the antibody by employing it to identify a newly discovered K(+)-channel protein. Anti-channel pore peptide was immunoreactive with various K(+)-channel subtypes native to a number of different species. Immunoblot analysis demonstrated affinity of the antibody for the drk1, maxi-K, and KAT1 K(+)-channel proteins. Studies also suggested that the anti-channel pore peptide antibody did not immunoreact with membrane proteins other than K+ channels. The anti-channel pore peptide antibody was used to establish the identity of a 62-kDa chloroplast inner envelope polypeptide as a putative component of a K(+)-channel protein. It was concluded that an antibody generated against the conserved pore region/selectivity filter of K+ channels has broad but selective affinity for this class of proteins. This K(+)-channel probe may be a useful tool for identification of K(+)-channel proteins in native membranes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research study deals with the quantification and characterization of the EPS obtained from two 25 L bench scale membrane bioreactors (MBRs) with micro-(MF-MBR) and ultrafiltration (UF-MBR) submerged membranes. Both reactors were fed with synthetic water and operated for 168 days without sludge extraction, increasing their mixed liquor suspended solid (MLSS) concentration during the experimentation time. The characterization of soluble EPS (EPSs) was achieved by the centrifugation of mixed liquor and bound EPS (EPSb) by extraction using a cationic resin exchange (CER). EPS characterization was carried out by applying the 3-dimensional excitation–emission matrix fluorescence spectroscopy (3D-EEM) and high-performance size exclusion chromatography (HPSEC) with the aim of obtaining structural and functional information thereof. With regard to the 3D-EEM analysis, fluorescence spectra of EPSb and EPSs showed 2 peaks in both MBRs at all the MLSS concentrations studied. The peaks obtained for EPSb were associated to soluble microbial by-product-like (predominantly protein-derived compounds) and to aromatic protein. For EPSs, the peaks were associated with humic and fulvic acids. In both MBRs, the fluorescence intensity (FI) of the peaks increased as MLSS and protein concentrations increased. The FI of the EPSs peaks was much lower than for EPSb. It was verified that the evolution of the FI clearly depends on the concentration of protein and humic acids for EPSb and EPSs, respectively. Chromatographic analysis showed that the intensity of the EPSb peak increased while the concentrations of MLSS did. Additionally, the mean MW calculated was always higher the higher the MLSS concentrations in the reactors. MW was higher for the MF-MBR than for the UF-MBR for the same MLSS concentrations demonstrating that the filtration carried out with a UF membrane lead to retentions of lower MW particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of nano-sized ZIF-11 with an average size of 36 ± 6 nm is reported. This material has been named nano-zeolitic imidazolate framework-11 (nZIF-11). It has the same chemical composition and thermal stability and analogous H2 and CO2 adsorption properties to the conventional microcrystalline ZIF-11 (i.e. 1.9 ± 0.9 μm). nZIF-11 has been obtained following the centrifugation route, typically used for solid separation, as a fast new technique (pioneering for MOFs) for obtaining nanomaterials where the temperature, time and rotation speed can easily be controlled. Compared to the traditional synthesis consisting of stirring + separation, the reaction time was lowered from several hours to a few minutes when using this centrifugation synthesis technique. Employing the same reaction time (2, 5 or 10 min), micro-sized ZIF-11 was obtained using the traditional synthesis while nano-scale ZIF-11 was achieved only by using centrifugation synthesis. The small particle size obtained for nZIF-11 allowed the use of the wet MOF sample as a colloidal suspension stable in chloroform. This helped to prepare mixed matrix membranes (MMMs) by direct addition of the membrane polymer (polyimide Matrimid®) to the colloidal suspension, avoiding particle agglomeration resulting from drying. The MMMs were tested for H2/CO2 separation, improving the pure polymer membrane performance, with permeation values of 95.9 Barrer of H2 and a H2/CO2 separation selectivity of 4.4 at 35 °C. When measured at 200 °C, these values increased to 535 Barrer and 9.1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research paper deals with the evolution of the extracellular polymeric substances (EPS) produced in the mixed liquor of two 25 L bench-scale membrane bioreactors (MBRs), with micro (MF-MBR) and ultrafiltration (UF-MBR) submerged membranes. The conclusion focuses on the relationship between the operation and how EPS respond, demonstrating that significant changes in EPS concentration were commonly observed when abrupt changes in the operational conditions took place. Bound EPS (EPSb) showed moderate positive statistical correlations with sludge age and MLSS for the two MBRs. Soluble EPS (EPSs), on the other hand, showed a moderate negative statistical correlation between EPSs with the two parameters analyzed for MF-MBR and no correlation with the UF-MBR was found. With respect to the composition of EPS, EPSb were mostly made up of proteins (44–46%) whereas in EPSs, the three components (proteins, carbohydrates, and humic substances) appeared in approximately the same proportion. The statistical analysis exhibited strong positive correlations between EPSb and their constituents, however for EPSs, the correlation was strong only with carbohydrates and moderate with humic substances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ion implantation of normally insulating polymers offers an alternative to depositing conjugated organics onto plastic films to make electronic circuits. We used a 50 keV nitrogen ion beam to mix a thin 10 nm Sn/Sb alloy film into the subsurface of polyetheretherketone and report the low temperature properties of this material. We observed metallic behavior, and the onset of superconductivity below 3 K. There are strong indications that the superconductivity does not result from a residual thin film of alloy, but instead from a network of alloy grains coupled via a weakly conducting, ion-beam carbonized polymer matrix. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O presente trabalho envolveu a produção de membranas compósitas para separação de CO2 a altas temperaturas. Os compósitos habituais são constituídos por duas fases, uma cerâmica, de céria dopada com gadolínio (Ce0.9Gd0.1O0.95 - CGO) condutora de iões óxido, que funciona como suporte da segunda fase composta por uma mistura eutética de carbonatos alcalinos (Li2CO3 e Na2CO3), que assegura o transporte de iões carbonato. O objetivo do trabalho prende-se com o estudo do transporte de iões através destes compósitos, por forma a perceber se os sais destes compósitos apresentam condução iónica singular ou condução mista. Neste sentido a resposta a esta questão teve por base a realização de ensaios de eficiência faradaica com recurso a amostras compósitas envolvendo matrizes de CGO (condutor de iões óxido) e de aluminato de lítio (não condutor de iões óxido). A preparação tanto de esqueletos porosos como de compósitos foi realizada tendo por base métodos e precursores semelhantes aos usados na literatura. Primeiramente efetuou-se o processamento dos esqueletos porosos para posteriormente impregnação com mistura eutética de carbonatos. Obtidos os compósitos estes foram caraterizados por microscopia de impedância e por microscopia eletrónica de varrimento de forma a serem submetidos mais tarde aos ensaios de eficiência faradaica. Os resultados de eficiência faradaica revelaram que na realidade existem processos de condução mista cuja importância depende das condições de operação da membrana.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ubiquitylation or covalent attachment of ubiquitin (Ub) to a variety of substrate proteins in cells is a versatile post-translational modification involved in the regulation of numerous cellular processes. The distinct messages that polyubiquitylation encodes are attributed to the multitude of conformations possible through attachment of ubiquitin monomers within a polyubiquitin chain via a specific lysine residue. Thus the hypothesis is that linkage defines polyubiquitin conformation which in turn determines specific recognition by cellular receptors. Ubiquitylation of membrane surface receptor proteins plays a very important role in regulating receptor-mediated endocytosis as well as endosomal sorting for lysosomal degradation. Epsin1 is an endocytic adaptor protein with three tandem UIMs (Ubiquitin Interacting Motifs) which are responsible for the highly specific interaction between epsin and ubiquitylated receptors. Epsin1 is also an oncogenic protein and its expression is upregulated in some types of cancer. Recently it has been shown that novel K11 and K63 mixed-linkage polyubiquitin chains serve as internalization signal for MHC I (Major Histocompatibility Complex I) molecule through their association with the tUIMs of epsin1. However the molecular mode of action and structural details of the interaction between polyubiquitin chains on receptors and tUIMs of epsin1 is yet to be determined. This information is crucial for the development of anticancer therapeutics targeting epsin1. The molecular basis for the linkage-specific recognition of K11 and K63 mixed-linkage polyubiquitin chains by the tandem UIMs of the endocytic adaptor protein epsin1 is investigated using a combination of NMR methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anaplasma marginale is the most prevalent tick-borne livestock pathogen and poses a significant threat to cattle industry. In contrast to currently available live blood-derived vaccines against A. marginale, alternative safer and better-defined subunit vaccines will be of great significance. Two proteins (VirB9-1 and VirB9-2) from the Type IV secretion system of A. marginale have been shown to induce humoral and cellular immunity. In this study, Escherichia coli were used to express VirB9-1 and VirB9-2 proteins. Silica vesicles having a thin wall of 6 nm and pore size of 5.8 nm were used as the carrier and adjuvant to deliver these two antigens both as individual or mixed nano-formulations. High loading capacity was achieved for both proteins, and the mouse immunisation trial with individual as well as mixed nano-formulations showed high levels of antibody titres over 107 and strong T-cell responses. The mixed nano-formulation also stimulated high-level recall responses in bovine T-cell proliferation assays. These results open a promising path towards the development of efficient A. marginale vaccines and provide better understanding on the role of silica vesicles to deliver multivalent vaccines as mixed nano-formulations able to activate both B-cell and T-cell immunity, for improved animal health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rationale: In line with complex intervention development, this research takes a systematic approach to examining the feasibility and acceptability of delivering Mindfulness-Based Cognitive Therapy (MBCT) to older people who experience symptoms of depression. Methods: A mixed methods approach was adopted in line with recommendations made by the MRC Complex Intervention Development framework. Quantitative and qualitative methods were combined by administering questionnaires as well as conducting post intervention interviews. A number of trial feasibility factors were examined such as recruitment and attrition rates. Qualitative data was analysed using Braun and Clarke’s thematic analysis framework. Results: Nine participants started the MBCT intervention and six completed the 8-week programme. The results suggest that MBCT for older people is feasible and acceptable. Participants reported improved mindfulness skills. Participants responded positively to being asked to take part in research and appeared to particularly value the group delivery format of the intervention. Conclusions: MBCT is both feasible and acceptable for older people experiencing symptoms of depression. Further research is required with larger sample sizes to allow for more robust statistical exploration of outcome measures, including mechanisms of change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexible sensors capable of detecting large strain are very useful for health monitoring and sport applications. Here a strain sensor is prepared by applying a thin layer of conducting polymer, polypyrrole (PPy), onto the fiber surface of an elastic fibrous membrane, electrospun polydimethylsiloxane (PDMS). The sensor shows a normal monotonic resistance response to strain in the range of 0–50%, but the response becomes “on-off switching” mode when the strain is between 100 and 200%. Both response modes are reversible and can work repeatedly for many cycles. This unique sensing behavior is attributed to overstretching of the polypyrrole coating, unique fibrous structure, and elasticity of PDMS fibers. It may be useful for monitoring the states where motions are only allowed in a particular range such as joint rehabilitation.