970 resultados para heterotrophic microbial


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of Acidithiobacillus group of bacteria in acid generation and heavy metal dissolution was studied with relevance to some Indian mines. Microorganisms implicated in acid generation such as Acidithiobacillus Acidithicibacillus thiooxidans and Leptospirillum ferrooxidans were isolated from abandoned mines, waste rocks and tailing dumps. Arsenite oxidizing Thiomonas and Bacillus group of bacteria were isolated and their ability to oxidize As (111) to As (V) established. Mine isolated Sulfate reducing bacteria were used to remove dissolved copper, zinc, iron and arsenic from solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbiological quality of the treated wastewater is an important parameter for its reuse. The data oil the Fecal Coliform (FC) and Fecal Streptococcus (FS) at different stages of treatment in the Sewage Treatment Plants (STPs) in Delhi watershed is not available, therefore in the present study microbial profiling of STPs was carried out to assess the effluent quality for present and future reuse options. This Study further evaluates the water quality profiles at different stages of treatment for 16 STPs in Delhi city. These STPs are based on conventional Activated Sludge Process (ASP), extended aeration, physical, chemical and biological treatment (BIOFORE), Trickling Filter and Oxidation Pond. The primary effluent quality produced from most of the STPs was suitable for Soil Aquifer Treatment (SAT). Extended Hydraulic Retention Time (HRT) as a result Of low inflow to the STPS Was responsible for high turbidity, COD and BODs removal. Conventional ASP based STPs achieved 1.66 log FC and 1.06 log FS removal. STPs with extended aeration treatment process produced better quality effluent with maximum 4 log order reduction in FC and FS levels. ``Kondli'' and ``Nilothi'' STPs employing ASP, produced better quality secondary effluent as compared to other STPs based oil similar treatment process. Oxidation Pond based STPs showed better FC and FS removals, whereas good physiochemical quality was achieved during the first half of the treatment. Based upon physical, chemical and microbiological removal efficiencies, actual integrated efficiency (IEa) of each STP was determined to evaluate its Suitability for reuse for irrigation purposes. Except Mehrauli'' and ``Oxidation Pond'', effluents from all other STPs require tertiary treatment for further reuse. Possible reuse options, depending Upon the geographical location, proximity of facilities of potential users based oil the beneficial uses, and sub-soil types, etc. for the Delhi city have been investigated, which include artificial groundwater recharge, aquaculture, horticulture and industrial uses Such as floor washing, boiler feed, and cooling towers, etc. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pristine peatlands are carbon (C) accumulating wetland ecosystems sustained by a high water level (WL) and consequent anoxia that slows down decomposition. Persistent WL drawdown as a response to climate and/or land-use change directly affects decomposition: increased oxygenation stimulates decomposition of the old C (peat) sequestered under prior anoxic conditions. Responses of the new C (plant litter) in terms of quality, production and decomposability, and the consequences for the whole C cycle of peatlands are not fully understood. WL drawdown induces changes in plant community resulting in shift in dominance from Sphagnum and graminoids to shrubs and trees. There is increasing evidence that the indirect effects of WL drawdown via the changes in plant communities will have more impact on the ecosystem C cycling than any direct effects. The aim of this study is to disentangle the direct and indirect effects of WL drawdown on the new C by measuring the relative importance of 1) environmental parameters (WL depth, temperature, soil chemistry) and 2) plant community composition on litter production, microbial activity, litter decomposition rates and, consequently, on the C accumulation. This information is crucial for modelling C cycle under changing climate and/or land-use. The effects of WL drawdown were tested in a large-scale experiment with manipulated WL at two time scales and three nutrient regimes. Furthermore, the effect of climate on litter decomposability was tested along a north-south gradient. Additionally, a novel method for estimating litter chemical quality and decomposability was explored by combining Near infrared spectroscopy with multivariate modelling. WL drawdown had direct effects on litter quality, microbial community composition and activity and litter decomposition rates. However, the direct effects of WL drawdown were overruled by the indirect effects via changes in litter type composition and production. Short-term (years) responses to WL drawdown were small. In long-term (decades), dramatically increased litter inputs resulted in large accumulation of organic matter in spite of increased decomposition rates. Further, the quality of the accumulated matter greatly changed from that accumulated in pristine conditions. The response of a peatland ecosystem to persistent WL drawdown was more pronounced at sites with more nutrients. The study demonstrates that the shift in vegetation composition as a response to climate and/or land-use change is the main factor affecting peatland ecosystem C cycle and thus dynamic vegetation is a necessity in any models applied for estimating responses of C fluxes to changes in the environment. The time scale for vegetation changes caused by hydrological changes needs to extend to decades. This study provides grouping of litter types (plant species and part) into functional types based on their chemical quality and/or decomposability that the models could utilize. Further, the results clearly show a drop in soil temperature as a response to WL drawdown when an initially open peatland converts into a forest ecosystem, which has not yet been considered in the existing models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of the nutritional requirements of Arthrobacter strain C19d which accumulates alanine in large amounts in the culture medium. 1evealed that the organism needs thiamine for its growth. A Iso the alanine accumulation by this strain was found to be related to thiamine concentration in the medium. The optimum concentration of thiamine for alanine accumulation (20 tJ.g/mJ) Was also optimum for the growth of the organism indicating thereby that alanine accumulation by this strain is a growth associated process rather than far removed from it. Among the various growth promoters tried yeast extract was found to be superior from the point of view of alanine yield and it wa5 also superior to giving thiamine alone in the medium. A concentration of 0.02% yeast extract was found to be optimum for alanine occumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological studies have shown an elevation in the incidence of asthma, allergic symptoms and respiratory infections among people living or working in buildings with moisture and mould problems. Microbial growth is suspected to have a key role, since the severity of microbial contamination and symptoms show a positive correlation, while the removal of contaminated materials relieves the symptoms. However, the cause-and-effect relationship has not been well established and knowledge of the causative agents is incomplete. The present consensus of indoor microbes relies on culture-based methods. Microbial cultivation and identification is known to provide qualitatively and quantitatively biased results, which is suspected to be one of the reasons behind the often inconsistent findings between objectively measured microbiological attributes and health. In the present study the indoor microbial communities were assessed using culture-independent, DNA based methods. Fungal and bacterial diversity was determined by amplifying and sequencing the nucITS- and16S-gene regions, correspondingly. In addition, the cell equivalent numbers of 69 mould species or groups were determined by quantitative PCR (qPCR). The results from molecular analyses were compared with results obtained using traditional plate cultivation for fungi. Using DNA-based tools, the indoor microbial diversity was found to be consistently higher and taxonomically wider than viable diversity. The dominant sequence types of fungi, and also of bacteria were mainly affiliated with well-known microbial species. However, in each building they were accompanied by various rare, uncultivable and unknown species. In both moisture-damaged and undamaged buildings the dominant fungal sequence phylotypes were affiliated with the classes Dothideomycetes (mould-like filamentous ascomycetes); Agaricomycetes (mushroom- and polypore-like filamentous basidiomycetes); Urediniomycetes (rust-like basidiomycetes); Tremellomycetes and the family Malasseziales (both yeast-like basidiomycetes). The most probable source for the majority of fungal types was the outdoor environment. In contrast, the dominant bacterial phylotypes in both damaged and undamaged buildings were affiliated with human-associated members within the phyla Actinobacteria and Firmicutes. Indications of elevated fungal diversity within potentially moisture-damage-associated fungal groups were recorded in two of the damaged buildings, while one of the buildings was characterized by an abundance of members of the Penicillium chrysogenum and P. commune species complexes. However, due to the small sample number and strong normal variation firm conclusions concerning the effect of moisture damage on the species diversity could not be made. The fungal communities in dust samples showed seasonal variation, which reflected the seasonal fluctuation of outdoor fungi. Seasonal variation of bacterial communities was less clear but to some extent attributable to the outdoor sources as well. The comparison of methods showed that clone library sequencing was a feasible method for describing the total microbial diversity, indicated a moderate quantitative correlation between sequencing and qPCR results and confirmed that culture based methods give both a qualitative and quantitative underestimate of microbial diversity in the indoor environment. However, certain important indoor fungi such as Penicillium spp. were clearly underrepresented in the sequence material, probably due to their physiological and genetic properties. Species specific qPCR was a more efficient and sensitive method for detecting and quantitating individual species than sequencing, but in order to exploit the full advantage of the method in building investigations more information is needed about the microbial species growing on damaged materials. In the present study, a new method was also developed for enhanced screening of the marker gene clone libraries. The suitability of the screening method to different kinds of microbial environments including biowaste compost material and indoor settled dusts was evaluated. The usability was found to be restricted to environments that support the growth and subsequent dominance of a small number microbial species, such as compost material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil is an unrenewable natural resource under increasing anthropogenic pressure. One of the main threats to soils, compromising their ability to provide us with the goods and ecosystem services we expect, is pollution. Oil hydrocarbons are the most common soil contaminants, and they disturb not just the biota but also the physicochemical properties of soils. Indigenous soil micro-organisms respond rapidly to changes in the soil ecosystem, and are chronically in direct contact with the hydrophobic pollutants on the soil surfaces. Soil microbial variables could thus serve as an intrinsically relevant indicator of soil quality, to be used in the ecological risk assessment of contaminated and remediated soils. Two contrasting studies were designed to investigate soil microbial ecological responses to hydrocarbons, together with parallel changes in soil physicochemical and ecotoxicological properties. The aim was to identify quantitative or qualitative microbiological variables that would be practicable and broadly applicable for the assessment of the quality and restoration of oil-polluted soil. Soil bacteria commonly react on hydrocarbons as a beneficial substrate, which lead to a positive response in the classical microbiological soil quality indicators; negative impacts were accurately reflected only after severe contamination. Hydrocarbon contaminants become less bioavailable due to weathering processes, and their potentially toxic effects decrease faster than the total concentration. Indigenous hydrocarbon degrader bacteria, naturally present in any terrestrial environment, use specific mechanisms to improve access to the hydrocarbon molecules adsorbed on soil surfaces. Thus when contaminants are unavailable even to the specialised degraders, they should pose no hazard to other biota either. Change in the ratio of hydrocarbon degrader numbers to total microbes was detected to predictably indicate pollutant effects and bioavailability. Also bacterial diversity, a qualitative community characteristic, decreased as a response to hydrocarbons. Stabilisation of community evenness, and community structure that reflected clean reference soil, indicated community recovery. If long-term temporal monitoring is difficult and appropriate clean reference soil unavailable, such comparison could possibly be based on DNA-based community analysis, reflecting past+present, and RNA-based community analysis, showing exclusively present conditions. Microbial ecological indicators cannot replace chemical oil analyses, but they are theoretically relevant and operationally practicable additional tools for ecological risk assessment. As such, they can guide ecologically informed and sustainable ecosophisticated management of oil-contaminated lands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of cell agglomerates has been found to influence significantly the rates of liquid drainage from static foams. The process of drainage has been modelled by considering the foam to be made of pentagonal dodecahedral bubbles yielding films, nearly horizontal and nearly vertical Plateau borders. The films are assumed to drain into both kinds of Plateau borders equally. The horizontal Plateau borders are assumed to receive liquid from the films and drain into the vertical Plateau borders, which, in turn, form the main flow paths for gravity drainage. The drainage process is assumed to be similar to that for pure liquid until a stage is reached where the size of the cell agglomerates become equivalent to those of films and Plateau borders. Thereafter, a squeezing flow mechanism has been formulated where the aggromerates deform and flow. The model based on the above assumptions has been verified against experimental results and has been found to predict not only drainage data but also the separation of cell agglomerates from broths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbes in natural and artificial environments as well as in the human body are a key part of the functional properties of these complex systems. The presence or absence of certain microbial taxa is a correlate of functional status like risk of disease or course of metabolic processes of a microbial community. As microbes are highly diverse and mostly notcultivable, molecular markers like gene sequences are a potential basis for detection and identification of key types. The goal of this thesis was to study molecular methods for identification of microbial DNA in order to develop a tool for analysis of environmental and clinical DNA samples. Particular emphasis was placed on specificity of detection which is a major challenge when analyzing complex microbial communities. The approach taken in this study was the application and optimization of enzymatic ligation of DNA probes coupled with microarray read-out for high-throughput microbial profiling. The results show that fungal phylotypes and human papillomavirus genotypes could be accurately identified from pools of PCR amplicons generated from purified sample DNA. Approximately 1 ng/μl of sample DNA was needed for representative PCR amplification as measured by comparisons between clone sequencing and microarray. A minimum of 0,25 amol/μl of PCR amplicons was detectable from amongst 5 ng/μl of background DNA, suggesting that the detection limit of the test comprising of ligation reaction followed by microarray read-out was approximately 0,04%. Detection from sample DNA directly was shown to be feasible with probes forming a circular molecule upon ligation followed by PCR amplification of the probe. In this approach, the minimum detectable relative amount of target genome was found to be 1% of all genomes in the sample as estimated from 454 deep sequencing results. Signal-to-noise of contact printed microarrays could be improved by using an internal microarray hybridization control oligonucleotide probe together with a computational algorithm. The algorithm was based on identification of a bias in the microarray data and correction of the bias as shown by simulated and real data. The results further suggest semiquantitative detection to be possible by ligation detection, allowing estimation of target abundance in a sample. However, in practise, comprehensive sequence information of full length rRNA genes is needed to support probe design with complex samples. This study shows that DNA microarray has the potential for an accurate microbial diagnostic platform to take advantage of increasing sequence data and to replace traditional, less efficient methods that still dominate routine testing in laboratories. The data suggests that ligation reaction based microarray assay can be optimized to a degree that allows good signal-tonoise and semiquantitative detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biotransformation of 3 beta-acetoxy-19-hydroxycholest-5-ene (19-HCA, 6 g) by Moraxella sp. was studied. Estrone (712 mg) was the major metabolite formed. Minor metabolites identified were 5 alpha-androst-1-en-19-ol-3,17-dione (33 mg), androst-4-en-19-ol-3,17-dione (58 mg), androst-4-en-9 alpha,19-diol-3,17-dione (12 mg), and androstan-19-ol-3,17-dione (1 mg). Acidic metabolites were not formed. Time course experiments on the fermentation of 19-HCA indicated that androst-4-en-19-ol-3,17-dione was the major metabolite formed during the early stages of incubation. However with continuing fermentation its level dropped, with a concomitant increase in estrone. Fermentation of 19-HCA in the presence of specific inhibitors or performing the fermentation for a shorter period (48 h) did not result in the formation of acidic metabolites. Resting-cell experiments carried out with 19-HCA (200 mg) in the presence of alpha,alpha'-bipyridyl led to the isolation of three additional metabolites, viz., cholestan-19-ol-3-one (2 mg), cholest-4-en-19-ol-3-one (10 mg), and cholest-5-en-3 beta,19-diol (12 mg). Similar results were also obtained when n-propanol was used instead of alpha,alpha'-bipyridyl. Resting cells grown on 19-HCA readily converted both 5 alpha-androst-1-en-19-ol-3,17-dione and androst-4-en-19-ol-3,17-dione into estrone. Partially purified 1,2-dehydrogenase from steroid-induced Moraxella cells transformed androst-4-en-19-ol-3,17-dione into estrone and formaldehyde in the presence of phenazine methosulfate, an artificial electron acceptor. These results suggest that the degradation of the hydrocarbon side chain of 19-HCA does not proceed via C-22 phenolic acid intermediates and complete removal of the C-17 side chain takes place prior to the aromatization of the A ring in estrone. The mode of degradation of the sterol side chain appears to be through the fission of the C-17-C-20 bond. On the basis of these observations, a new pathway for the formation of estrone from 19-HCA in Moraxella sp. has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microbial survey of Jamnagar bauxite mines in Gujarat, India, revealed the indigenous presence of a variety of autotrophic and heterotrophic bacteria and fungi associated with the ore body and water ponds in the vicinity. Among these, bacteria belonging to the genera Thiobacillus, Bacillus and Pseudomonas are implicated in the weathering of aluminosilicates; the precipitation of iron oxyhydroxides; the dissolution and conversion of alkaline metal species; and the formation of alumina, silica and calcite minerals. Fungi belonging to the genus Cladosporium can reduce ferric iron and dissolve alumina silicates. Biogenesis thus plays a significant role in bauxite mineralization. Various types of bacteria and fungi, such as Bacillus polymyxa, Bacillus coagulans and Aspergillus niger, were found to be efficient in significant calcium solubilization and partial iron removal from bauxite ore. Probable mechanisms in the biobeneficiation process are analyzed. Biobeneficiation is shown to be an effective technique for the removal of iron and calcium from bauxite ores for use in refractories and ceramics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report an analysis of the protein sequence length distribution for 13 bacteria, four archaea and one eukaryote whose genomes have been completely sequenced, The frequency distribution of protein sequence length for all the 18 organisms are remarkably similar, independent of genome size and can be described in terms of a lognormal probability distribution function. A simple stochastic model based on multiplicative processes has been proposed to explain the sequence length distribution. The stochastic model supports the random-origin hypothesis of protein sequences in genomes. Distributions of large proteins deviate from the overall lognormal behavior. Their cumulative distribution follows a power-law analogous to Pareto's law used to describe the income distribution of the wealthy. The protein sequence length distribution in genomes of organisms has important implications for microbial evolution and applications. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, electroleaching and electrobioleaching of ocean manganese nodules are discussed along with the role of galvanic interactions in bioleaching. Polarization studies using a manganese nodule slurry electrode system indicated that the maximum dissolution of iron and manganese due to electrochemical reduction occurred at negative DC potentials of -600 and -1,400 mV(SCE). Electroleaching and electrobioleaching of ocean manganese nodules in the presence of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans at the above negative applied DC potentials resulted insignificant dissolution of copper, nickel and cobalt in 1 M H2SO4 and in sulfuric acid solution at pH 0.5 and 2.0. Mechanisms involved in electrobioleaching of ocean manganese nodules are discussed. Galvanic leaching of ocean manganese nodules in the presence of externally added pyrite and pyrolusite for enhancement of dissolution was also studied. Various electrochemical and biochemical parameters were optimized, and the electroleaching and galvanic processes thus developed are shown to yield almost complete dissolution of all metal values. This electrobioleaching process developed in the laboratory may be cost effective, energy efficient and environmentally friendly.