754 resultados para electroabsorption modulator
Resumo:
The electro-absorption properties and Stark-shift of 1.3μm InGaAs quantum dot waveguide modulators are characterized under reverse bias. 2.5Gb/s data modulation is demonstrated for the first time with clear eye diagrams and error-free back-to-back performance. © 2007 Optical Society of America.
Resumo:
The integration of quantum cascade lasers with devices capable of efficiently manipulating terahertz light represents a fundamental step for many different applications. Split-ring resonators, subwavelength metamaterial elements exhibiting broad resonances that are easily tuned lithographically, represent the ideal route to achieve such optical control of the incident light. We have realized a design based on the interplay between metallic split rings and the electronic properties of a graphene monolayer integrated into a single device. By acting on the doping level of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 and 3.1 THz, with a maximum modulation depth of 18%. © 2014 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The integration of quantum cascade lasers with devices capable of efficiently manipulating terahertz light, represents a fundamental step for many different applications. Split-ring resonators, sub-wavelength metamaterial elements exhibiting broad resonances that are easily tuned lithographically, represent the ideal route to achieve such optical control of the incident light. We have realized a design based on the interplay between metallic split rings and the electronic properties of a graphene monolayer integrated into a single device. By acting on the doping level of graphene, an active modulation of the optical intensity was achieved in the frequency range between 2.2 THz and 3.1 THz, with a maximum modulation depth of 18%.
Resumo:
A wafer-level testable silicon-on-insulator-based microring modulator is demonstrated with high modulation speed, to which the grating couplers are integrated as the fiber-to-chip interfaces. Cost-efficient fabrications are realized with the help of optical structure and etching depth designs. Grating couplers and waveguides are patterned and etched together with the same slab thickness. Finally we obtain a 3-dB coupling bandwidth of about 60nm and 10 Gb/s nonreturn-to-zero modulation by wafer-level optical and electrical measurements.
Resumo:
An optical modulator is designed and fabricated based on a Si0.75Ge0.25/Si/Si0.5Ge0.5 asymmetrical superlattice structure. The device comprises a p-i-n diode made on the asymmetrical superlattice integrated with a 920-mu m-long Fabry-Perot (F-P) cavity. Parameters of the rib waveguide are designed to satisfy only the fundamental-TE mode transmission. Here, 65 and 40-pm red shifts of the peak resonant were measured under the applied bias of 2.5 and -32.0 V, respectively. The analysis shows that, besides the thermal-optical and plasma dispersion effects, the Pockels effect also contributes to such a peak shift. The corresponding calculated effective Pockels coefficient is about 0.158 pm/V.
Resumo:
We present the design and numerical simulation results for a silicon waveguide modulator based on carrier depletion in a linear array of periodically interleaved PN junctions that are oriented perpendicular to the light propagation direction. In this geometry the overlap of the optical waveguide mode with the depletion region is much larger than in designs using a single PN junction aligned parallel to the waveguide propagation direction. Simulations predict that an optimized modulator will have a high modulation efficiency of 0.56 V.cm for a 3V bias, with a 3 dB frequency bandwidth of over 40 GHz. This device has a length of 1.86 mm with a maximum intrinsic loss of 4.3 dB at 0V bias, due to free carrier absorption. (C) 2009 Optical Society of America
Resumo:
This paper presents a new technique to generate microwave signal using an electro-absorption modulator (EAM) integrated with a distributed feedback (DFB) laser subject to optical injection. Experiments show that the frequency of the generated microwave can be tuned by changing the wavelength of the external laser or adjusting the bias voltage of the EAM. The frequency response of the EAM is studied and found to be unsmooth due to packaging parasitic effects and four-wave mixing effect occurring in the active layer of the DFB laser. It is also demonstrated that an EA modulator integrated in between two DFB lasers can be used instead of the EML under optical injection. This integrated chip can be used to realize a monolithically integrated tunable microwave source. (C) 2009 Optical Society of America
Resumo:
Resumo:
A new method of analyzing the chirp characteristics of directly modulated lasers and integrated laser-modulators is presented in this paper. Phase-circuit has been introduced into the circuit model of distributed feedback (DFB) lasers in the analysis. Therefore, the chirp characteristics of the device can be obtained by simulating the modified circuit model. The simulation results agree well with the published data. Furthermore, this modified model is combined with the circuit model of electroabsorption (EA) modulators to simulate the chirp characteristics of the monolithic integration of a DFB laser and an EA modulator. The simulation is focused on the dependence of the frequency chirp of the integrated device on the isolation resistance between laser and modulator. Much lower chirp can be seen in the integrated lightwave source compared to the directly modulated laser.
Resumo:
A novel butt-joint coupling scheme is proposed to improve the coupling efficiency for the integration of a GalnAsP MQW distributed feedback (DFB) laser with an MQW electro-absorption modulator (EAM). The proposed method gives more than 90% coupling efficiency, being much higher than the 26% coupling efficiency of the common MQW-MQW coupling technique. The differential quantum efficiency of the MQW-bulk-MQW coupled device is also much higher than that of the MQW-MQW device, 0.106 mW/mA versus 0.02 mW/mA. The EAM-DFB devices fabricated by the proposed method exhibit a very high modulation efficiency (12 dB/V) from 0 to I V. By adopting a high-mesa ridge waveguide and buried polyimide, the capacitance of the modulator is reduced to about 0.28 pF. The experimental results demonstrate that the method can replace the conventional MQW-MQW coupling technique to fabricate high-quality integrated photonic devices. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A resonant-cavity enhanced reflective optical modulator is designed and frabricated, with three groups of three highly strained InGaAS/GaAs quantum wells in the cavity, for the low voltage and high contrast ratio operation. The quantum wells are positioned in antinodes of the optical standing wave. The modulator is grown in a single growth step in an molecular beam epitaxy system, using GaAs/AIAs distributed Bragg reflectors as both the top and bottom mirrors. Results show that the reflection device has a modulation extinction of 3 dB at -4.5 V bias.
Resumo:
A novel in-plane bandgap energy controlling technique by ultra-low pressure (22 mbar) selective area growth (SAG) has been developed. To our knowledge, this is the lowest pressure condition during SAG process ever reported. In this work, high crystalline quality InGaAsP-InP MQWs with a photoluminescence (PL) full-width at half-maximum (FWHM) of less than 35meV are selectively grown on mask-patterned planar InP substrates by ultra-low pressure (22 mbar) metal-organic chemical vapor deposition (MOCVD). In order to study the uniformity of the MQWs grown in the selective area, novel tapered masks are designed and used. Through optimizing growth conditions, a wide wavelength shift of over 80 nm with a rather small mask width variation (0-30 mu m) is obtained. The mechanism of ultra-low pressure SAG is detailed by analyzing the effect of various mask designs and quantum well widths. This powerful technique is then applied to fabricate an electroabsorption-modulated laser (EML). Superior device characteristics are achieved, such as a low threshold current of 19mA and an output power of 7mW. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A novel Si-based metal-oxide-semiconductor (MOS) electrooptic phase modulator including two shunt oxide layer capacitors integrated on a silicon-on-insulator (SOI) waveguide is simulated and analyzed. The refractive index near the two gate oxide layers is modified by the free carrier dispersion effect induced by applying a positive bias on the electrodes. The theoretical calculation of free carrier distribution coupled with optical guided mode propagation characteristics has been carried out. The influence of the structure parameters such as the width and the doping level of the active region are analyzed. A half-wave voltage V-pi = 4 V is demonstrated with an 8-mm active region length and a 4-mu m width of an inner rib under an accumulation mode. When decreasing the inner rib width to 1 mu m, the phase modulation efficiency is even higher, and the rise and fall times reach 50 and 40 ps, respectively, with a 1.0 x 10(17) cm(-3) doping level in the active region.
Resumo:
Electro-optical modulator with dual capacitors is designed and based on this design basic configuration of device is realized in laboratory. Exceeding GHz switching speed and high phase modulation efficiency can be expected with this device.
Resumo:
Wavelength tunable electro-absorption modulated distributed Bragg reflector lasers (TEMLs) are promising light source in dense wavelength division multiplexing (DWDM) optical fiber communication system due to high modulation speed, small chirp, low drive voltage, compactness and fast wavelength tuning ability. Thus, increased the transmission capacity, the functionality and the flexibility are provided. Materials with bandgap difference as large as 250nm have been integrated on the same wafer by a combined technique of selective area growth (SAG) and quantum well intermixing (QWI), which supplies a flexible and controllable platform for the need of photonic integrated circuits (PIC). A TEML has been fabricated by this technique for the first time. The component has superior characteristics as following: threshold current of 37mA, output power of 3.5mW at 100mA injection and 0V modulator bias voltage, extinction ratio of more than 20 dB with modulator reverse voltage from 0V to 2V when coupled into a single mode fiber, and wavelength tuning range of 4.4nm covering 6 100-GHz WDM channels. A clearly open eye diagram is observed when the integrated EAM is driven with a 10-Gb/s electrical NRZ signal. A good transmission characteristic is exhibited with power penalties less than 2.2 dB at a bit error ratio (BER) of 10(-10) after 44.4 km standard fiber transmission.