687 resultados para coplanar waveguides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic states and magnetotransport properties of quantum waveguides (QW's) in the presence of nonuniform magnetic fields perpendicular to the QW plane are investigated theoretically. It is found that the magnetoconductance of those structures as a function of Fermi energy exhibits stepwise variation or square-wave-like oscillations, depending on the specific distributions (both in magnitude and direction) of nonuniform magnetic fields in QW's. We have investigated the dual magnetic strip structures and three magnetic strip structures. The character of the magnetotransport is closely related to the effective magnetic potential and the energy-dispersion spectrum of electron in the structures. It is found that dispersion relations seem to be combined by different sets of dispersion curves that belong to different individual magnetic subwaveguides. The magnetic effective potential leads to the coupling of states and the substantial distortion of the original dispersion curves at the interfaces in which the abrupt change of magnetic fields appears. Magnetic scattering states are created. Only in some three magnetic strip structures, these scattering states produce the dispersion relations with oscillation structures superimposed on the bulk Landau levels. It is the oscillatory behavior in dispersions that leads to the occurrence of square-wave-like modulations in conductance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A scattering matrix method for investigating the electron transport in quantum waveguides is presented. By dividing the structure into a number of transverse slices, the global scattering matrix is obtained by the composition of the individual scattering matrices associated with each interface. Complicated geometries and inhomogeneous external potentials are included in the formulation. It is shown that the proposed scattering matrix method possesses many advantages over the traditional mode-matching and transfer matrix methods, especially in treating the electron wave propagation in complicated geometries. Justification for the method is provided by the unitarity of the calculated scattering matrix, and the consistency of the results with those obtained by the recursive Green's function method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the effective coupling coefficient k(eff) and the self-coupling coefficient zeta(1) are introduced to describe the characteristic of gratings in a resonant situation when the effects of radiation and other partial waves coupling are considered. The dependence of these two coupling coefficients on grating tooth shapes and depths and the dimensions of graded refractive index (GRIN) waveguides is numerically analysed. The results show that the gratings with linear GRIN waveguides have the largest \k(eff)\. The possibility of realizing a complex-coupled DFB laser, even a pure gain or loss coupled DFB laser, employing only a real refractive index coupled grating is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognizing the computational difficulty due to the exponential behavior of the evanescent states in the calculations of the electron transmission in waveguide structures, the authors propose two transfer matrix methods and apply them to investigate the influence of the evanescent states on the electron wave propagation. The study shows that the effect of the evanescent states on the electron transport is obvious when the electron energy is close to the subband minima. The results show that the calculated transmissions are much enhanced if the evanescent states are omitted in the calculations. For the multiple-stub structures, it is found that the connecting channel length has a critical effect on the electron transmission depending on it larger or smaller than the attenuation lengths of evanescent states. Based on the study of the evanescent states, a new kind of waveguide structures which exhibit quantum modulated transistor action is proposed. (C) 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the possibility of a quantum directional coupler based on Pi-shaped coupled electron waveguides with smooth boundaries. By calculating the transmission spectra, we propose an optimized coupler structure with a high directivity and fine uniformity. The coupler specifications, directivity, uniformity, and coupling coefficient are evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A transfer matrix approach is presented for the study of electron conduction in an arbitrarily shaped cavity structure embedded in a quantum wire. Using the boundary conditions for wave functions, the transfer matrix at an interface with a discontinuous potential boundary is obtained for the first time. The total transfer matrix is calculated by multiplication of the transfer matrix for each segment of the structure as well as numerical integration of coupled second-order differential equations. The proposed method is applied to the evaluation of the conductance and the electron probability density in several typical cavity structures. The effect of the geometrical features on the electron transmission is discussed in detail. In the numerical calculations, the method is found to be more efficient than most of the other methods in the literature and the results are found to be in excellent agreement with those obtained by the recursive Green's function method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A transfer matrix method is presented for the study of electron conduction in a quantum waveguide with soft wall lateral confinement. By transforming the two-dimensional Schrodinger equation into a set of second order ordinary differential equations, the total transfer matrix is obtained and the scattering probability amplitudes are calculated. The proposed method is applied to the evaluation of the electron transmission in two types of cavity structure with finite-height square-well confinement. The results obtained by our method, which are found to be in excellent agreement with those from another transfer matrix method, suggest that the infinite square-well potential is a good approximation to finite-height square-well confinement for electrons propagating in the ground transverse mode, but softening of the walls has an obvious effect on the electron transmission and mode-mixing for propagating in the excited transverse mode. (C) 1996 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of two dimension beam propagation method (2D-BPM) with high order Pade approximation, behaviors of SOI waveguide based bend intersections with variant bending radius are simulated and analized. The result shows that crosstalk of intersections decreases with the increase of bending radius and intersecting angle. Furthermore, loss and crosstalk characteristics of bend intersections formed by sine bend, cosine bend and arc bend are compared. Sine bend based structures are proved that it can present lowest loss and smallest crosstalk properties among the three and may find their wide application in the design of bend intersections and other more complicated photonic devices and circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 1×8 multimode interference power splitter with multimode input/output waveguides in SOI material is designed by the beam propagation method and fabricated by the inductive coupled plasma etching technology for use in fiber optics communication systems.The fabricated device exhibits low loss and good coupling uniformity.The excess loss is lower than 0.8dB,and the uniformity is 0.45dB at the wavelength of 1550nm.Moreover,the polarization dependent loss is lower than 0.7dB at 1550nm.The device size is only 2mm×10mm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new fabrication technology for three-dimensionally buried silica on silicon optical waveguide based on deep etching and thermal oxidation is presented. Using this method, a silicon layer is left at the side of waveguide. The stress distribution and effective refractive index are calculated by using finite element method and finite different beam propagation method, respectively. The results indicate that the stress of silica on silicon optical waveguide fabricated by this method can be matched in parallel and vertical directions and stress birefringence can be effectively reduced due to the side-silicon layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SOI waveguides fabricated by wet-etching method are demonstrated. The single mode waveguide and 1×2 3dB BBI splitter are analyzed and designed by three dimensional beam propagation method to correct the error of effective index method and guided mode method. The devices are fabricated. Excellent performances, such as low propagation loss of -1.37dB/cm, low excess of -2.2dB, and good uniformity of 0.3dB, are achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bloch modes can be excited in planar array due to its periodic lateral refractive index. The power coupled into each eigenmode of the array waveguides is calculated through the overlap integrals of the input field with the eigenmode fields of the coupled infinite array waveguides projected onto the x-axis. Low losses can be obtained if the transition from the array to the free propagation region is adiabatic. Due to the finite resolution of lithographic process the gap between the waveguides will stop abruptly, however, when the waveguides come into too close together. Calculation results show that losses will occur at this discontinuity, which are dependent on the ratio of the gap between the waveguides and grating pitch and on the confinement of field in the array waveguides. Tapered waveguides and low index contrast between the core and cladding layers can lower the transmitted losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

City Univ Hong Kong

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model for understanding the formation and propagation of modes in curved optical waveguides is developed. A numerical method for the calculation of curved waveguide mode profiles and propagation constants in two dimensional waveguides is developed, implemented and tested. A numerical method for the analysis of propagation of modes in three dimensional curved optical waveguides is developed, implemented and tested. A technique for the design of curved waveguides with reduced transition loss is presented. A scheme for drawing these new waveguides and ensuring that they have constant width is also provided. Claims about the waveguide design technique are substantiated through numerical simulations.