786 resultados para antifungal polysulphides
Resumo:
Candida yeasts are common in the oral cavity and can cause candidosis in the presence of predisposing factors, especially diabetes. The manifestation of the disease is related to this set of local factors such as the presence of dental prostheses, salivary pH, salivary flow and tobacco and the ability to form biofilms. Biofilms are specific and organized communities of cells under the control of signaling molecules rather than random accumulations of cells resulting from cell division and frequently are drugs resistance. Aim: The objectives of this study were to determine the genetic patterns of these C. albicans isolates and to evaluate the in vitro activity amphotericin B and caspofungin against C. albicans biofilms. Methods: Microbial samples were collected from subgingival sites and seeded in CHROMagar for subsequent identification of C. albicans by PCR. Genotypes were defined based on the identification of the transposable introns in the 25S rDNA by PCR. Results: In this study, 6 strains were identified as C. albicans and of these, 3 strains were genotype A and 3 were genotype B. The results showed that both amphotericin B and caspofungin exhibited strong antifungal activities against C. albicans biofilm formation and inhibiting the biofilm formation ranging from 70.8 – 95.3% and 77.7 - 88.7%, respectively. The antifungals studied had low inhibitory effect on preformed biofims, ranging from 39.5 - 50.8% for amphotericin B and from 23.1 - 36.9% for caspofungin at the same concentration. The activity of the two drugs was most effective in inhibit biofilm formation.
Resumo:
Alterations that lead to deficiency of the immune system, such as diabetes mellitus, may promote proliferation of Candida albicans and selection of strains which have greater ability to adhere and to penetrate the host tissues. Recent studies indicate an increase of the antifungal resistance of C. albicans isolates in periodontal pockets, suggesting that the oral cavity could be a reservoir of resistant yeast to antifungal agents. Moreover, oral cavity can act as a reservoir of certain pathogens that may cause systemic infections. The periodontal pocket is an ecological niche suitable to host microorganisms that could act as opportunistic pathogens. The aim of this study is to contribute to the understanding of resistance to conventional antifungal against C. albicans isolates from patients with periodontitis and diabetes. The determination of the minimal inhibitory concentrations (MIC) was evaluated according to M27S3 of the CLSI (2008), with modifications. The results showed that 48.8% of the studied strains were resistant to one or more antifungals and 6.6% were resistant to fluconazole and voriconazole. These results suggest an increasing resistance to conventional antifungal agents among Candida species, suggesting that the oral cavity could host pathogen fungi.
Resumo:
Purpose: Fungi are a major cause of keratitis, although few medications are licensed for their treatment. The aim of this study is to observe the variation in commercialisation of antifungal eye drops, and to predict the seasonal distribution of fungal keratitis in Brazil. Methods: Data from a retrospective study of antifungal eye drops sales from the only pharmaceutical ophthalmologic laboratory, authorized to dispense them in Brazil (Opthalmos) were gathered. These data were correlated with geographic and seasonal distribution of fungal keratitis in Brazil between July 2002 and June 2008. Results: A total of 26,087 antifungal eye drop units were sold, with a mean of 2.3 per patient. There was significant variation in antifungal sales during the year (p < 0.01). A linear regression model displayed a significant association between reduced relative humidity and antifungal drug sales (R-2 = 0.17, p < 0.01). Conclusions: Antifungal eye drops sales suggest that there is a seasonal distribution of fungal keratitis. A possible interpretation is that the third quarter of the year (a period when the climate is drier), when agricultural activity is more intense in Brazil, suggests a correlation with a higher incidence of fungal keratitis. A similar model could be applied to other diseases, that are managed with unique, or few, and monitorable medications to predict epidemiological aspects.
Resumo:
Background: Sugarcane is one of the most important crops in Brazil, mainly because of its use in biofuel production. Recent studies have sought to determine the role of sugarcane endophytic microbial diversity in microorganism-plant interactions, and their biotechnological potential. Epicoccum nigrum is an important sugarcane endophytic fungus that has been associated with the biological control of phytopathogens, and the production of secondary metabolites. In spite of several studies carried out to define the better conditions to use E. nigrum in different crops, little is known about the establishment of an endophytic interaction, and its potential effects on plant physiology. Methodology/Principal Findings: We report an approach based on inoculation followed by re-isolation, molecular monitoring, microscopic analysis, plant growth responses to fungal colonization, and antimicrobial activity tests to study the basic aspects of the E. nigrum endophytic interaction with sugarcane, and the effects of colonization on plant physiology. The results indicate that E. nigrum was capable of increasing the root system biomass and producing compounds that inhibit the in vitro growth of sugarcane pathogens Fusarium verticillioides, Colletotrichum falcatum, Ceratocystis paradoxa, and Xanthomomas albilineans. In addition, E. nigrum preferentially colonizes the sugarcane surface and, occasionally, the endophytic environment. Conclusions/Significance: Our work demonstrates that E. nigrum has great potential for sugarcane crop application because it is capable of increasing the root system biomass and controlling pathogens. The study of the basic aspects of the interaction of E. nigrum with sugarcane demonstrated the facultative endophytism of E. nigrum and its preference for the phylloplane environment, which should be considered in future studies of biocontrol using this species. In addition, this work contributes to the knowledge of the interaction of this ubiquitous endophyte with the host plant, and also to a better use of microbial endophytes in agriculture.
Resumo:
Lectins are carbohydrate-binding proteins of non-imune origin. This group of proteins is distributed widely in nature and they have been found in viruses, microorganisms, plants and animals. Lectins of plants have been isolated and characterized according to their chemical, physical-chemical, structural and biological properties. Among their biological activities, we can stress its fungicidal action. It has been previously described the effect of the lectins Dviol, DRL, ConBr and LSL obtained from the seeds of leguminous plants on the growth of yeasts isolated from vaginal secretions. In the present work the experiments were carried out in microtiter plates and the results interpreted by both methods: visual observations and a microplate reader at 530nm. The lectin concentrations varied from 0.5 to 256 mu g/mL, and the inoculum was established between 65-70% of trammitance. All yeast samples isolated from vaginal secretion were evaluated taxonomically, where were observed macroscopic and microscopic characteristics to each species. The LSL lectin did not demonstrate any antifungal activity to any isolate studied. The other lectins DRL, ConBr and DvioL, showed antifungal potential against yeast isolated from vaginal secretion. These findings offering offer a promising field of investigation to develop new therapeutic strategies against vaginal yeast infections, collaborating to improve women's health.
Resumo:
In this study, the CH2Cl2 extract from leaves of Piper chimonantifolium was subjected to several chromatographic separation procedures to afford one chromene (gaudichaudianic acid) as a major compound as well as two flavonoids (dihydrooroxylin and pinocembrin) and three steroids (sitosterol, sitosteryl palmitate and stigmasterol). The structures of all determined compounds were characterised by spectrometric analysis, mainly mass spectrometry and NMR, as well as their optical properties. This article describes the first phytochemical study of the leaves of P. chimonantifolium and an evaluation of the antifungal activity of its major compounds.
Resumo:
A phytochemical study of the ethyl acetate extract of the roots and adventitious roots of Spirotropis longifolia, a monodominant tree species of the Guianan rainforest, has allowed the isolation of three compounds: 2- hydroxy-8,9-methylenedioxy-2',2'-dimethylpyrano-[5',6':4,3]-6a-prenyl-[6aS,11aS]-pterocarpan (spirotropin A), 2-hydroxy-8,9-methylenedioxy-2',2'-dimethy1-3',4'-dihydropyrano-[5',6':4,3]-6a-prenyl-(6aS,11aS]-pterocarpan (spirotropin B), and 5,7-dihydroxy-6.8-dipreny1-2 ''''.2 ''''-dimethylpyrano[5 '''',6 '''': 3',4]-isoflavone (spirotropone). In addition, 10 known compounds, trans-oxyresveratrol, trans-resveratrol, piceatannol, daidzein, genistein, isoprunetin, lupeol, latifolol, gnetin D and gnetin E, were also isolated. These compounds were evaluated for their antifungal activity and their cytotoxicity, and their structures were established by 1D and 2D NMR, HRMS, CD and optical rotation measurements. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Clin Microbiol Infect 2012; 18: E380E388 Abstract In this randomized clinical trial, the clinical and mycological efficacy of Photodynamic Therapy (PDT) was compared with that of topical antifungal therapy for the treatment of denture stomatitis (DS) and the prevalence of Candida species was identified. Patients were randomly assigned to one of two groups (n = 20 each); in the nystatin (NYT) group patients received topical treatment with nystatin (100 000 IU) four times daily for 15 days and in the PDT group the denture and palate of patients were sprayed with 500 mg/L of Photogem (R), and after 30 min of incubation, were illuminated by light emitting-diode light at 455 nm (37.5 and 122 J/cm2, respectively) three times a week for 15 days. Mycological cultures taken from dentures and palates and standard photographs of the palates were taken at baseline (day 0), at the end of the treatment (day 15) and at the follow-up time intervals (days 30, 60 and 90). Colonies were quantified (CFU/mL) and identified by biochemical tests. Data were analysed by Fishers exact test, analysis of variance and Tukey tests and ? test (a = 0.05). Both treatments significantly reduced the CFU/mL at the end of the treatments and on day 30 of the follow-up period (p <0.05). The NYT and PDT groups showed clinical success rates of 53% and 45%, respectively. Candida albicans was the most prevalent species identified. PDT was as effective as topical nystatin in the treatment of DS.
Resumo:
Lectins are carbohydrate-binding proteins of non-imune origin. This group of proteins is distributed widely in nature and they have been found in viruses, microorganisms, plants and animals. Lectins of plants have been isolated and characterized according to their chemical, physical-chemical, structural and biological properties. Among their biological activities, we can stress its fungicidal action. It has been previously described the effect of the lectins Dviol, DRL, ConBr and LSL obtained from the seeds of leguminous plants on the growth of yeasts isolated from vaginal secretions. In the present work the experiments were carried out in microtiter plates and the results interpreted by both methods: visual observations and a microplate reader at 530nm. The lectin concentrations varied from 0.5 to 256µg/mL, and the inoculum was established between 65-70% of trammitance. All yeast samples isolated from vaginal secretion were evaluated taxonomically, where were observed macroscopic and microscopic characteristics to each species. The LSL lectin did not demonstrate any antifungal activity to any isolate studied. The other lectins DRL, ConBr and DvioL, showed antifungal potential against yeast isolated from vaginal secretion. These findings offering offer a promising field of investigation to develop new therapeutic strategies against vaginal yeast infections, collaborating to improve women's health.
Resumo:
The brown rot fungi belong to a group of fungal pathogens that causes considerable damage to cultivated fruits trees, particularly stone fruits and apples in the temperate regions of the World and during the postharvest with an important economic impact. In particular in Italy, it is important to monitor the Monilinia population to control economic losses associated to the peach and nectarine market. This motivates the research steps presented in this dissertation on Monilinia Italian isolates. The Monilinia species collected from stone fruits have been identified using molecular analysis based on specific primers. The relevant role of M. fructicola was confirmed and, for the first time, it was found also on apple fruits. To avoid the development of resistant strains and implement valid treatment strategies, the understanding of the fruit natural resistance during different developmental stages and the assessment of the Monilinia sensitivity/resistance to fungicides are required. The relationship between the inhibition spots and the phenolic compounds in peach fruit peel was highlighted in this research. Three methods were used to assess isolate resistance/sensitivity, the amended medium, the Spiral Gradient Endpoint Method (SGD) and the Alamar Blue method. The PCR was used to find possible mutation points in the b-tubulin gene that is responsible for fungicide resistance. Interestingly, no mutation points were observed in resistant M. laxa isolates, suggesting that the resistance could be stimulated by environmental factors. This lead to the study of the effect of the temperature on the resistance and the preliminary results of in vitro tests showed that maximum inhibition was observed at 30°C.
Resumo:
The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C:N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community.
Resumo:
We analyzed the species distribution of Candida blood isolates (CBIs), prospectively collected between 2004 and 2009 within FUNGINOS, and compared their antifungal susceptibility according to clinical breakpoints defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) in 2013, and the Clinical and Laboratory Standards Institute (CLSI) in 2008 (old CLSI breakpoints) and 2012 (new CLSI breakpoints). CBIs were tested for susceptiblity to fluconazole, voriconazole and caspofungin by microtitre broth dilution (Sensititre® YeastOne™ test panel). Of 1090 CBIs, 675 (61.9%) were C. albicans, 191 (17.5%) C. glabrata, 64 (5.9%) C. tropicalis, 59 (5.4%) C. parapsilosis, 33 (3%) C. dubliniensis, 22 (2%) C. krusei and 46 (4.2%) rare Candida species. Independently of the breakpoints applied, C. albicans was almost uniformly (>98%) susceptible to all three antifungal agents. In contrast, the proportions of fluconazole- and voriconazole-susceptible C. tropicalis and F-susceptible C. parapsilosis were lower according to EUCAST/new CLSI breakpoints than to the old CLSI breakpoints. For caspofungin, non-susceptibility occurred mainly in C. krusei (63.3%) and C. glabrata (9.4%). Nine isolates (five C. tropicalis, three C. albicans and one C. parapsilosis) were cross-resistant to azoles according to EUCAST breakpoints, compared with three isolates (two C. albicans and one C. tropicalis) according to new and two (2 C. albicans) according to old CLSI breakpoints. Four species (C. albicans, C. glabrata, C. tropicalis and C. parapsilosis) represented >90% of all CBIs. In vitro resistance to fluconazole, voriconazole and caspofungin was rare among C. albicans, but an increase of non-susceptibile isolates was observed among C. tropicalis/C. parapsilosis for the azoles and C. glabrata/C. krusei for caspofungin according to EUCAST and new CLSI breakpoints compared with old CLSI breakpoints.
Resumo:
PURPOSE Contamination with bacteria and/or fungi is a serious complication in organ-cultured corneas. Hence, antibiotic and antifungal agents are added to the culture medium. The concentration of different antimicrobial and antifungal additives to the media over time has so far not been investigated in detail and is the aim of this study. METHODS Nine human fresh corneoscleral discs were stored in corneal culture medium consisting of 2% fetal bovine serum and minimal essential medium. In addition, the culture medium contained 1200 μg/mL penicillin G, 25 μg/mL amphotericin B, 120 μg/mL streptomycin, and 100 μg/mL voriconazole. The concentration of amphotericin B used was 10 times higher than in clinical routine to facilitate its detection. The cultures were kept at 37°C for 28 days. At days 0, 7, 14, 21, and 28, samples of the culture medium were harvested for analysis of antimicrobial concentrations by liquid chromatography and electrospray ionization tandem mass spectrometry. RESULTS During corneal storage, the concentration of all antibiotics and antifungal agents declined significantly. By day 28, penicillin G was reduced to 14% of the original concentration. Amphotericin B and streptomycin retained approximately 60% of the original concentration to the end of the experiment and voriconazole maintained stable concentrations after an initial decline to approximately 80% at 7 days. CONCLUSIONS Throughout the entire storage period, the concentrations of penicillin G, streptomycin, and voriconazole exceeded the minimum inhibitory concentrations of all common contaminants, obviating the need for a change of the medium for antimicrobial reasons. Based on the minimum inhibitory concentrations and our findings, the initial concentration of amphotericin B should be raised to 5 μg/mL.