984 resultados para anisotropic properties
Resumo:
The influence of the substrate temperature on the structural features and opto-electrical properties of undoped and indium-doped ZnO thin films deposited by pyrosol process was investigated. The addition of indium induces a drastic decrease (by a factor approximate to 10(10) for samples deposited at 300 degreesC) in the electrical resistivity of films, the lowest electrical resistivity (6 mOmega-cm) being observed for the film deposited at 450 degreesC. Films are highly transparent (>80%) in the Vis-NIR ranges, and the optical band gap exhibits a blue shift (from 3.29 to 3.33 eV) for the In-doped films deposited at increasing temperature. Preferential orientation of the ZnO crystallites with the c-axis perpendicular to the substrate surface and an anisotropic morphology of the nanoporous structure was observed for films growth at 300 and 350 degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Indium doped ZnO films were deposited by the pyrosol process on glass substrates at different temperatures from solutions containing In/Zn molar ratios up to 10%. The nanostructure of the films was investigated using grazing-incidence small angle X-ray scattering (GISAXS). The mass density was determined by X-ray reflectivity and the composition by X-ray photoelectron spectroscopy. The GISAXS measurements revealed an anisotropic pattern for films deposited at 573 and 623 K and a isotropic one for those deposited at higher temperatures. The anisotropic patterns indicate the presence of elongated nanopores with their long axes perpendicular to the film surface. In contrast, the isotropic nature of GISAXS patterns of films grown at high temperatures (673 and 723 K) suggests the presence of spherical voids. The pore size distribution function determined from the isotropic patterns indicates a multimodal size distribution. on the other hand, the measured mass density of the doped films with isotropic nanotexture is higher than that of the anisotropic films while the electric resistivity is significantly lower. This is in agreement with the detected strong reduction of the void density and specific surface area at approximately constant pore size.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We write the London limit of the Lawrence Doniach free energy in terms of the local magnetic field and of the average supercurrent over the interplane distance. Starting from this formulation we study a model where the supercurrent at the buffer layers is obtained from the superconducting sheets by a Taylor expansion. The continuum limit of this model gives corrections to the anisotropic London theory due to the layered structure.
Resumo:
A new analytical theory including friction was developed to assess strain limits in punch stretching of anisotropic sheet metals. This new approach takes into consideration the anisotropic behaviour of sheet materials and could explain the mechanical behaviour of a variety of anisotropic sheet materials. The theory explains the sheet metal failure so for the drawing as the stretching region of the forming limit curve, particularly for materials that present the strain-ratio dependence of limit strain ε 1, where dε 1/dρ is not always greater than zero. dε 1/ dρ or dε 1/dε 2 could be equal to or smaller than zero for a range of materials. Therefore, this new theory can explains such experimental observations, besides to assuming that membrane element relations near the pole, for the case of punch stretching are dependent of sheet metal properties as the process history and also suggests that the onset of local necking is controlled by shear. Thus, theoretical results obtained through this new approach are compared with experimental results available in the literature. It is demonstrated the effect of friction on a FLC curve for both regions, drawing and stretching. © 2010 American Institute of Physics.
Resumo:
Using numerical simulations, we analyze the anisotropy effects in the critical currents and dynamical properties of vortices in a thin superconducting film submitted to hexagonal and Kagomé periodical pinning arrays. The calculations are performed at zero temperature, for transport currents parallel and perpendicular to the main axis of the lattice, and parallel to the diagonal axis of the rhombic unit cell. We show that the critical currents and dynamic properties are anisotropic for both pinning arrays and all directions of the transport current. The anisotropic effects are more significant just above the critical current and disappear with higher values of current and both pinning arrays. The dynamical phases for each case and a wide range of transport forces are analyzed. © 2012 Springer Science+Business Media, LLC.
Resumo:
This work presents an application of a Boundary Element Method (BEM) formulation for anisotropic body analysis using isotropic fundamental solution. The anisotropy is considered by expressing a residual elastic tensor as the difference of the anisotropic and isotropic elastic tensors. Internal variables and cell discretization of the domain are considered. Masonry is a composite material consisting of bricks (masonry units), mortar and the bond between them and it is necessary to take account of anisotropy in this type of structure. The paper presents the formulation, the elastic tensor of the anisotropic medium properties and the algebraic procedure. Two examples are shown to validate the formulation and good agreement was obtained when comparing analytical and numerical results. Two further examples in which masonry walls were simulated, are used to demonstrate that the presented formulation shows close agreement between BE numerical results and different Finite Element (FE) models. © 2012 Elsevier Ltd.
Resumo:
It is shown that highly conducting films of polyaniline protonated with di-esters of sulfosuccinic and sulfophthalic acids which contain alkyl- or alkoxy-type substituents exhibit highly anisotropic structural, electrical and magnetic properties. The layered-like structure of these films can be described as consisting of polyaniline chains which are mainly oriented parallel to the plane of the film and form regular out-of-plane stacks. These stacks are separated by bilayers of the dopant anions. Accordingly, the main anisotropy observed for solution cast films implies in-plane and out-of-plane measurements. An electrical anisotropy of about 80 is found for the in-plane and out-of-plane electronic conductivities at 5 K. The temperature dependences of the in-plane and out-of-plane conductivities are qualitatively similar and have been fitted as a series combination of variable-range-hopping-type and power law contributions. A maximum is observed in the temperature dependence of the electrical anisotropy at low temperature. The films also show a clear anisotropy of magnetization whose temperature and field characteristics depend on the chemical structure of the dopant anion. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Assessing a full set of mechanical properties is a rather complicate task in the case of foams, especially if material models must be calibrated with these results. Many issues, for example anisotropy and heterogeneity, influence the mechanical behavior. This article shows through experimental analyses how the microstructure affects different experimental setups and it also quantifies the degree of anisotropy of a poly(vinyl chloride) foam. Monotonic and cyclic experimental tests were carried out using standard compression specimens and non-standard tensile specimens. Results are complemented and compared with the aid of a digital image correlation technique and scanning electron microscopy analyses. Mechanical properties (e.g., elastic and plastic Poisson's ratios) are evaluated for compression and tensile tests, for two different material directions (normal and in-plane). The material is found to be transversely isotropic. Differences in the results of the mechanical properties can be as high as 100%, or even more depending on the technique used and the loading direction. Also, the experimental analyses show how the material's microstructure behavior, like the evolution of the herein identified yield fronts and a spring back phenomenon, can influence the phenomenological response and the failure mechanisms as well as the hardening curves. POLYM. ENG. SCI., 52:2654-2663, 2012. (C) 2012 Society of Plastics Engineers
Resumo:
We study the effective interaction between two ellipsoidal particles at the interface of two fluid phases which are mediated by thermal fluctuations of the interface. Within a coarse-grained picture, the properties of fluid interfaces are very well described by an effective capillary wave Hamiltonian which governs both the equilibrium interface configuration and the thermal fluctuations (capillary waves) around this equilibrium (or mean-field) position. As postulated by the Goldstone theorem the capillary waves are long-range correlated. The interface breaks the continuous translational symmetry of the system, and in the limit of vanishing external fields - like gravity - it has to be accompanied by easily excitable long wavelength (Goldstone) modes – precisely the capillary waves. In this system the restriction of the long-ranged interface fluctuations by particles gives rise to fluctuation-induced forces which are equivalent to interactions of Casimir type and which are anisotropic in the interface plane. Since the position and the orientation of the colloids with respect to the interface normal may also fluctuate, this system is an example for the Casimir effect with fluctuating boundary conditions. In the approach taken here, the Casimir interaction is rewritten as the interaction between fluctuating multipole moments of an auxiliary charge density-like field defined on the area enclosed by the contact lines. These fluctuations are coupled to fluctuations of multipole moments of the contact line position (due to the possible position and orientational fluctuations of the colloids). We obtain explicit expressions for the behavior of the Casimir interaction at large distances for arbitrary ellipsoid aspect ratios. If colloid fluctuations are suppressed, the Casimir interaction at large distances is isotropic, attractive and long ranged (double-logarithmic in the distance). If, however, colloid fluctuations are included, the Casimir interaction at large distances changes to a power law in the inverse distance and becomes anisotropic. The leading power is 4 if only vertical fluctuations of the colloid center are allowed, and it becomes 8 if also orientational fluctuations are included.
Resumo:
Most quark actions in lattice QCD encounter difficulties with chiral sym-rnmetry and its spontaneous breakdown. Minimally doubled fermions (MDF)rnare a category of strictly local chiral lattice fermions, whose continuum limitrnreproduces two degenerate quark flavours. The two poles of their Dirac ope-rnrator are aligned such that symmetries under charge conjugation or reflectionrnof one particular direction are explictly broken at finite lattice spacing. Pro-rnperties of MDF are scrutinised with regard to broken symmetry and mesonrnspectrum to discern their suitability for numerical studies of QCD.rnrnInteractions induce anisotropic operator mixing for MDF. Hence, resto-rnration of broken symmetries in the continuum limit requires three coun-rnterterms, one of which is power-law divergent. Counterterms and operatorrnmixing are studied perturbatively for two variants of MDF. Two indepen-rndent non-perturbative procedures for removal of the power-law divergencernare developed by means of a numerical study of hadronic observables forrnone variant of MDF in quenched approximation. Though three out of fourrnpseudoscalar mesons are affected by lattice artefacts, the spectrum’s conti-rnnuum limit is consistent with two-flavour QCD. Thus, suitability of MDF forrnnumerical studies of QCD in the quenched approximation is demonstrated.
Resumo:
The optical quality of the human eye mainly depends on the refractive performance of the cornea. The shape of the cornea is a mechanical balance between intraocular pressure and tissue intrinsic stiffness. Several surgical procedures in ophthalmology alter the biomechanics of the cornea to provoke local or global curvature changes for vision correction. Legitimated by the large number of surgical interventions performed every day, the demand for a deeper understanding of corneal biomechanics is rising to improve the safety of procedures and medical devices. The aim of our work is to propose a numerical model of corneal biomechanics, based on the stromal microstructure. Our novel anisotropic constitutive material law features a probabilistic weighting approach to model collagen fiber distribution as observed on human cornea by Xray scattering analysis (Aghamohammadzadeh et. al., Structure, February 2004). Furthermore, collagen cross-linking was explicitly included in the strain energy function. Results showed that the proposed model is able to successfully reproduce both inflation and extensiometry experimental data (Elsheikh et. al., Curr Eye Res, 2007; Elsheikh et. al., Exp Eye Res, May 2008). In addition, the mechanical properties calculated for patients of different age groups (Group A: 65-79 years; Group B: 80-95 years) demonstrate an increased collagen cross-linking, and a decrease in collagen fiber elasticity from younger to older specimen. These findings correspond to what is known about maturing fibrous biological tissue. Since the presented model can handle different loading situations and includes the anisotropic distribution of collagen fibers, it has the potential to simulate clinical procedures involving nonsymmetrical tissue interventions. In the future, such mechanical model can be used to improve surgical planning and the design of next generation ophthalmic devices.
Resumo:
A new anisotropic elastic-viscoplastic damage constitutive model for bone is proposed using an eccentric elliptical yield criterion and nonlinear isotropic hardening. A micromechanics-based multiscale homogenization scheme proposed by Reisinger et al. is used to obtain the effective elastic properties of lamellar bone. The dissipative process in bone is modeled as viscoplastic deformation coupled to damage. The model is based on an orthotropic ecuntric elliptical criterion in stress space. In order to simplify material identification, an eccentric elliptical isotropic yield surface was defined in strain space, which is transformed to a stress-based criterion by means of the damaged compliance tensor. Viscoplasticity is implemented by means of the continuous Perzyna formulation. Damage is modeled by a scalar function of the accumulated plastic strain D(κ) , reducing all element s of the stiffness matrix. A polynomial flow rule is proposed in order to capture the rate-dependent post-yield behavior of lamellar bone. A numerical algorithm to perform the back projection on the rate-dependent yield surface has been developed and implemented in the commercial finite element solver Abaqus/Standard as a user subroutine UMAT. A consistent tangent operator has been derived and implemented in order to ensure quadratic convergence. Correct implementation of the algorithm, convergence, and accuracy of the tangent operator was tested by means of strain- and stress-based single element tests. A finite element simulation of nano- indentation in lamellar bone was finally performed in order to show the abilities of the newly developed constitutive model.