993 resultados para Xanthophyll cycle Mehler-peroxidase reaction
Resumo:
Six cattle that had earlier exposure to Dermatobia hominis were infested experimentally with first-instar larvae of the parasite. Skin biopsies taken at intervals were studied in wax and in plastic sections. The avidin-biotin-peroxidase method was used to detect the presence and localization of host immunoglobulins (Igs) G and M and antigens of first and second instar larvae of Dermatobia hominis. The larvae penetrated actively through the skin and migrated towards the subcutaneous tissues. The great numbers of eosinophils suggest that they are the most important cell in mediating damage to D.hominis larvae. The immunoglobulins bound only to dead or moulting larvae in which access to binding sites may have been altered. This could represent a morphological manifestation of a mechanism that protects larvae from the host immune response. Large amounts of soluble antigens detected along the fistulous tract may be important in the maintenance of this tract by disturbing the normal cicatrization process.
Resumo:
Peroxidase from peach fruit was purified 28.9-fold by DEAE-cellulose, Sephadex G-100 and hydroxylapatite chromatography. The purified enzyme showed only one peak of activity with an optimum pH of 5.0 and temperature of 40 degreesC. The calculated activation energy (Ea) for the reaction was 7.97 kcal/mol. The enzyme was heat-labile in the temperature range of 60 to 80 degreesC with a fast inactivation at 80 degreesC. PAGE of the inactivation course at 70 degreesC showed only one band of activity. Different sugars increased the heat stability of the activity in the following order: sucrose>lactose>glucose>fructose. Measurement of residual activity showed a stabilizing effect of sucrose at various temperature/sugar concentrations (10 to 40%, w/w) with the Ea for inactivation increasing with sucrose concentration from 0 to 20% (w/w). After inactivation at 70 degreesC and 75 degreesC the enzyme was able to be reactivated by up to 40% of the initial activity when stared at 30 degreesC.
Resumo:
The evolution of elemental Hg from its environmental compounds has already been supposed to be an important process within the global mercury cycle. The present study characterizes the abiotic reduction of Hg(II) ions by typical river humic substances (HS) conventionally pre-isolated by the adsorbent XAD 8 from the Rio Negro near Manaus, Brazil. For the investigation of this reduction process a special reaction and Hg(0) trapping unit combined with cold-vapor atomic absorption spectrometry (CVAAS) was developed. Preconcentration of traces of mercury(II), if required, was obtained by a home-made FIA system using microcolumns filled with the Hg(II)-selective collector CheliteS(R) (Serva Company). The effect of environmentally relevant parameters such as the pH value, the Hg(II)/HS ratio and the HS concentration on the I-IE;(II) reduction process was studied as a function of the time. The Hg(0) production was highest at pH 8.0 and in the case of decreasing HS amounts (0.5 mg) when about 65% of initially 1.0 mug Hg(H) was reduced within 50 h. Moreover, the reduction efficiency of HS towards HE;(II) strongly depended on the HS concentration but hardly on the Hg(II)/HS ratio. The reduction kinetics followed a relatively slow two-step first-order mechanism with formal rate constants of about 0.1 and 0.02 h(-1), respectively. Based on these findings the possible relevance of the abiotic evolution of mercury in humic-rich aquatic environments is considered. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Spermatogenesis and steroidogenesis undergo seasonal variations during the reproductive cycle in amphibians. Testicular morphological and morphometric seasonal variations as well as interstitial lipidic inclusions and intralobular glycoconjugates were evaluated during seasonal cycle of Rana catesbeiana. Testes of frogs collected during the annual seasons were weighed for calculation of GSI (Gonadosomatic index). Seminiferous lobule diameters (DSL) and volume densities of seminiferous lobules (VvSL), excretory ducts (VvED), and interstitial tissue (VvIT) were analyzed. Semithin sections were submitted to Periodic Acid-Schiff (PAS) and Alcian Blue (AB) methods for detection of glycoconjugates, while lipidic inclusions were detected by Sudan Black B. GSI showed no significant variations during the year. Since VvED and VvIT increased significantly during summer and were inversely proportional to VvSL, a compensatory effect between the testicular compartments may be related to the maintenance of GSI. During autumn/winter, larger lobular diameters were observed in comparison to spring/summer when spermiogenesis and spermiation were commonly observed. The increased VvIT and the numerous lipidic inclusions in the interstitial cells during summer suggest a relationship between spermiogenesis and steroidogenesis. Besides the structural stability variations occurring in the IT and SL, a possible paracrine interaction between ED and IT should be also involved in the IT development during summer. The presence of PAS and AB-positive globular structures were observed in the seminiferous lobules and excretory ducts. These structures containing acid glycoconjugates appear to be Sertoli cell apical portions, which are accumulated in the lumen of the seminiferous lobules mainly during spermiation. © 2004 Wiley-Liss, Inc.
Resumo:
The nucleolus is a subcompartment of the nucleus and the site of ribosome biogenesis. During the mitotic and meiotic cell cycles, a disorganization and later reorganization of the nucleolar material occur, an event called nucleologenesis. In the spermatogenesis of mammals and other vertebrates, there is evidence of the disorganization of the nucleolus at the end of meiosis I, which supplies material for the cytoplasmic formation of an organelle called the chromatoid body (CB). The CB is a structure characteristic of spermatogenic cells and seems to be responsible for RNA metabolism in these cells and for some events of spermiogenesis, such as the formation of the acrosome, cellular communication between spermatids, and the formation of the spermatozoon middle piece and tail. The aim of this paper was to obtain information about the cytochemical and ultrastructural nature of the nucleolar cycle and the distribution of cytoplasmic RNAs in the seminiferous tubule cells of Rattus novergiucus, Mus musculus and Meriones unguiculatus. The testis was fixed in Bouin and Karnovsky solutions for conventional histological analysis and for cytochemical study that included: periodic acid-Schiff, hematoxylin-eosin, Feulgen reaction, silver-ion impregnation, Gomori's reticulin stain, toluidine blue, modified method of critical electrolyte concentration, and basic and acid fast green. The blocks of testis fixed in glutaraldehyde were used for ultrastructural analysis by transmission electron microscopy. Ultrathin sections were double-stained with uranyl acetate and lead citrate. All the techniques used provided information on the origin and function of the CB in the spermatogenic cells. Therefore, considering the persistence of the RNA and nucleolar ribonucleoproteins during spermatogenesis of Rattus novergicus, Mus musculus and Meriones unguiculatus, our findings corroborate the statement that these molecular complexes are very important in the spermiogenesis phases. It can be suggested that these ribonucleoprotein corpuscles (chromatoid bodies) are of nuclear origin and have a role in the successive series of events that occur in the formation of the spermatozoon. Furthermore, these results reinforce the conservation of the mechanisms involved in preserving necessary levels of protein stocks in different stages of cell differentiation, from spermatid to spermatozoon, in these rodent species. ©FUNPEC-RP.
Resumo:
Background: Fluctuations of estradiol and progesterone levels caused by the menstrual cycle worsen asthma symptoms. Conflicting data are reported in literature regarding pro and anti-inflammatory properties of estradiol and progesterone.Methods: Female Wistar rats were ovalbumin (OVA) sensitized 1 day after resection of the ovaries (OVx). Control group consisted of sensitized-rats with intact ovaries (Sham-OVx). Allergic challenge was performed by aerosol (OVA 1%, 15 min) two weeks later. Twenty four hours after challenge, BAL, bone marrow and total blood cells were counted. Lung tissues were used as explants, for expontaneous cytokine secretion in vitro or for immunostaining of E-selectin.Results: We observed an exacerbated cell recruitment into the lungs of OVx rats, reduced blood leukocytes counting and increased the number of bone marrow cells. Estradiol-treated OVx allergic rats reduced, and those treated with progesterone increased, respectively, the number of cells in the BAL and bone marrow. Lungs of OVx allergic rats significantly increased the E-selectin expression, an effect prevented by estradiol but not by progesterone treatment. Systemically, estradiol treatment increased the number of peripheral blood leukocytes in OVx allergic rats when compared to non treated-OVx allergic rats. Cultured-BAL cells of OVx allergic rats released elevated amounts of LTB4 and nitrites while bone marrow cells increased the release of TNF-α and nitrites. Estradiol treatment of OVx allergic rats was associated with a decreased release of TNF-α, IL-10, LTB4 and nitrites by bone marrow cells incubates. In contrast, estradiol caused an increase in IL-10 and NO release by cultured-BAL cells. Progesterone significantly increased TNF- α by cultured BAL cells and bone marrow cells.Conclusions: Data presented here suggest that upon hormonal oscillations the immune sensitization might trigger an allergic lung inflammation whose phenotype is under control of estradiol. Our data could contribute to the understanding of the protective role of estradiol in some cases of asthma symptoms in fertile ans post-menopausal women clinically observed. © 2010 de Oliveira et al; licensee BioMed Central Ltd.
Resumo:
This study describes the male reproductive cycle of Sibynomorphus mikanii from southeastern Brazil considering macroscopic and microscopic variables. Spermatogenesis occurs during spring-summer (September-December) and spermiogenesis or maturation occurs in summer (December-February). The length and width of the kidney, the tubular diameter, and the epithelium height of the sexual segment of the kidney (SSK) are larger in summer-autumn (December-May). Histochemical reaction of the SSK [periodic acid-Schiff (PAS) and bromophenol blue (BB)] shows stronger results during summer-autumn, indicating an increase in the secretory activity of the granules. Testicular regression is observed in autumn and early winter (March-June) when a peak in the width of the ductus deferens occurs. The distal ductus deferens as well as the ampulla ductus deferentis exhibit secretory activities with positive reaction for PAS and BB. These results suggest that this secretion may nourish the spermatozoa while they are being stored in the ductus deferens. The increase in the Leydig cell nuclear diameter in association with SSK hypertrophy and the presence of sperm in the female indicate that the mating season occurs in autumn when testes begin to decrease their activity. The peak activity of Leydig cells and SSK exhibits an associated pattern with the mating season. However, spermatogenesis is dissociated of the copulation characterizing a complex reproductive cycle. At the individual level, S. mikanii males present a continuous cyclical reproductive pattern in the testes and kidneys (SSK), whereas at the populational level the reproductive pattern may be classified as seasonal semisynchronous. © 2012 Wiley Periodicals, Inc.
Resumo:
The dba-free Heck-Matsuda reaction was investigated via direct ESI-MS(/MS) monitoring. Palladium species involved in the reduction of Pd(ii) during a Wacker type reaction and several dba-free arylpalladium transient complexes were detected and characterized. Based on these findings, a more comprehensible catalytic cycle for this pivotal reaction is suggested. © 2013 The Royal Society of Chemistry.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction. American trypanosomiasis, also known as Chagas disease, is a zoonosis caused by Trypanosoma cruzi (T. cruzi). Dogs and cats participate actively in this parasite's transmission cycle. This study aimed at evaluating the occurrence of T. cruzi in dogs and cats from Botucatu, SP, Brazil, as well as at evaluating the technique of hemoculture in LIT (liver infusion tryptose) medium by polymerase chain reaction (PCR). Methods. Blood samples were collected from 50 dogs and 50 cats in Botucatu-SP, Brazil. For hemoculture, the samples were inoculated in LIT medium, and readings were performed for four months. Upon completion of such period, all the hemocultures were processed for parasitic DNA extraction. The PCR reactions were performed by using primers TCZ1/TCZ2. Results. Ten dogs and ten cats (20%) were positive to PCR, and four dogs and three cats (7%) were positive to hemoculture. Only in a one cat sample (1%) there was confirmation of positive hemoculture by PCR for T. cruzi. Conclusions. Results showed that PCR was a suitable tool for the confirmation of the parasite detection in hemoculture samples, and that dogs and cats from Botucatu, SP, Brazil, are maintaining the role of household reservoirs of T. cruzi, which reinforces the need for constant epidemiologic surveillance for this zoonosis.
Resumo:
A study of the interference of Zn2+ ions on phenol degradation by Fenton reaction (Fe2+/Fe3(+) + H2O2) is reported. One of the first intermediates formed in the reaction, catechol, can reduce Fe3+ to Fe2+ and, in the presence of H2O2 initiates an efficient catalytic redox cycle. In the initial stages of the reaction, this catechol-mediated cycle becomes the principal route of thermal degradation of phenol and its oxidation products. The Zn2+ ion addition enhances the persistence time of catechol, probably by stabilization of the corresponding semiquinone radical via complexation.
Resumo:
Walking on irregular surfaces and in the presence of unexpected events is a challenging problem for bipedal machines. Up to date, their ability to cope with gait disturbances is far less successful than humans': Neither trajectory controlled robots, nor dynamic walking machines (Limit CycleWalkers) are able to handle them satisfactorily. On the contrary, humans reject gait perturbations naturally and efficiently relying on their sensory organs that, if needed, elicit a recovery action. A similar approach may be envisioned for bipedal robots and exoskeletons: An algorithm continuously observes the state of the walker and, if an unexpected event happens, triggers an adequate reaction. This paper presents a monitoring algorithm that provides immediate detection of any type of perturbation based solely on a phase representation of the normal walking of the robot. The proposed method was evaluated in a Limit Cycle Walker prototype that suffered push and trip perturbations at different moments of the gait cycle, providing 100% successful detections for the current experimental apparatus and adequately tuned parameters, with no false positives when the robot is walking unperturbed.