965 resultados para Variability of surface wind field


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study online approximations to Gaussian process models for spatially distributed systems. We apply our method to the prediction of wind fields over the ocean surface from scatterometer data. Our approach combines a sequential update of a Gaussian approximation to the posterior with a sparse representation that allows to treat problems with a large number of observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit at about 800 km, carrying a C-band scatterometer. A scatterometer measures the amount of backscatter microwave radiation reflected by small ripples on the ocean surface induced by sea-surface winds, and so provides instantaneous snap-shots of wind flow over large areas of the ocean surface, known as wind fields. Inherent in the physics of the observation process is an ambiguity in wind direction; the scatterometer cannot distinguish if the wind is blowing toward or away from the sensor device. This ambiguity implies that there is a one-to-many mapping between scatterometer data and wind direction. Current operational methods for wind field retrieval are based on the retrieval of wind vectors from satellite scatterometer data, followed by a disambiguation and filtering process that is reliant on numerical weather prediction models. The wind vectors are retrieved by the local inversion of a forward model, mapping scatterometer observations to wind vectors, and minimising a cost function in scatterometer measurement space. This thesis applies a pragmatic Bayesian solution to the problem. The likelihood is a combination of conditional probability distributions for the local wind vectors given the scatterometer data. The prior distribution is a vector Gaussian process that provides the geophysical consistency for the wind field. The wind vectors are retrieved directly from the scatterometer data by using mixture density networks, a principled method to model multi-modal conditional probability density functions. The complexity of the mapping and the structure of the conditional probability density function are investigated. A hybrid mixture density network, that incorporates the knowledge that the conditional probability distribution of the observation process is predominantly bi-modal, is developed. The optimal model, which generalises across a swathe of scatterometer readings, is better on key performance measures than the current operational model. Wind field retrieval is approached from three perspectives. The first is a non-autonomous method that confirms the validity of the model by retrieving the correct wind field 99% of the time from a test set of 575 wind fields. The second technique takes the maximum a posteriori probability wind field retrieved from the posterior distribution as the prediction. For the third technique, Markov Chain Monte Carlo (MCMC) techniques were employed to estimate the mass associated with significant modes of the posterior distribution, and make predictions based on the mode with the greatest mass associated with it. General methods for sampling from multi-modal distributions were benchmarked against a specific MCMC transition kernel designed for this problem. It was shown that the general methods were unsuitable for this application due to computational expense. On a test set of 100 wind fields the MAP estimate correctly retrieved 72 wind fields, whilst the sampling method correctly retrieved 73 wind fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary: Renewable energy is one of the main pillars of sustainable development, especially in developing economies. Increasing energy demand and the limitation of fossil fuel reserves make the use of renewable energy essential for sustainable development. Wind energy is considered to be one of the most important resources of renewable energy. In North African countries, such as Egypt, wind energy has an enormous potential; however, it faces quite a number of technical challenges related to the performance of wind turbines in the Saharan environment. Seasonal sand storms affect the performance of wind turbines in many ways, one of which is increasing the wind turbine aerodynamic resistance through the increase of blade surface roughness. The power loss because of blade surface deterioration is significant in wind turbines. The surface roughness of wind turbine blades deteriorates because of several environmental conditions such as ice or sand. This paper is the first review on the topic of surface roughness effects on the performance of horizontal-axis wind turbines. The review covers the numerical simulation and experimental studies as well as discussing the present research trends to develop a roadmap for better understanding and improvement of wind turbine performance in deleterious environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgement Construction and maintenance of the experiment system was funded by the state Special Fund for Agro-scientific Research in the Public Interest “Climate Change Impacts on Crop Production and Mitigation” under a grant number 200903003. This work was financially supported by Ministry of Science and Technology of China under a grant number 2012BAC19B01 and Department of Science and Technology of Jiangsu province under a grant number BK20150684. The international cooperation was funded by “111 project” (B12009) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The contribution of Pete Smith was funded by the Chinese Ministry of Agriculture and the United Kingdom Department for Environment, Food and Rural Affairs (DEFRA) under UK-China Sustainable Agriculture Innovation Network (SAIN). The contribution of Timothy Filley was also funded by the state foreign expert agency under a project of Foreign High-end expert program. The authors thank Jiangsu Tianniang Agro-Technology Company Ltd. for the assistance in maintaining the experiment system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current dynamics in the Strait of Bonifacio (south Corsica) were investigated at a small scale during the STELLAMARE1 multidisciplinary cruise in summer 2012, using in situ measurements and modeling data. The Strait of Bonifacio is a particularly sensitive marine area in which specific conservation measures have been taken to preserve the natural environment and wild species. Good knowledge of the hydrodynamics in this area is essential to optimize the Marine Protected Area's management rules. Therefore, we used a high-resolution model (400 m) based on the MARS3D code to investigate the main flux exchanges and to formulate certain hypotheses about the formation of possible eddy structures. The aim of the present paper is first to synthetize the results obtained by combining Acoustic Doppler Current Profiler data, hydrological parameters, Lagrangian drifter data, and satellite observations such as MODIS OC5 chlorophyll a data or Metop-A AVHRR Sea Surface Temperature (SST) data. These elements are then used to validate the presence of the mesoscale eddies simulated by the model and their recurrence outside the cruise period. To complete the analysis, the response of the 3D hydrodynamical model was evaluated under two opposing wind systems and certain biases were detected. Strong velocities up to 1 m s(-1) were recorded in the east part due to the Venturi effect; a complementary system of vortices governed by Coriolis effect and west wind was observed in the west part, and horizontal stratification in the central part has been identified under typical wind condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the structure and intensity of the surface pathways connecting to and from the central areas of the large-scale convergence regions of the eastern Pacific Ocean. Surface waters are traced with numerical Lagrangian particles transported in the velocity field of three different ocean models with horizontal resolutions that range from ¼° to 1/32°. The connections resulting from the large-scale convergent Ekman dynamics agree qualitatively but are strongly modulated by eddy variability that introduces meridional asymmetry in the amplitude of transport. Lagrangian forward-in-time integrations are used to analyze the fate of particles originating from the central regions of the convergence zones and highlight specific outflows not yet reported for the southeastern Pacific when using the currents at the highest resolutions (1/12° and 1/32°). The meridional scales of these outflows are comparable to the characteristic width of the fine-scale striation of mean currents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we use an observational dataset built from Argo in situ profiles to describe the main large-scale patterns of intraseasonal mixed layer depth (MLD) variations in the Indian Ocean. An eddy permitting (0.25A degrees) regional ocean model that generally agrees well with those observed estimates is then used to investigate the mechanisms that drive MLD intraseasonal variations and to assess their potential impact on the related SST response. During summer, intraseasonal MLD variations in the Bay of Bengal and eastern equatorial Indian Ocean primarily respond to active/break convective phases of the summer monsoon. In the southern Arabian Sea, summer MLD variations are largely driven by seemingly-independent intraseasonal fluctuations of the Findlater jet intensity. During winter, the Madden-Julian Oscillation drives most of the intraseasonal MLD variability in the eastern equatorial Indian Ocean. Large winter MLD signals in northern Arabian Sea can, on the other hand, be related to advection of continental temperature anomalies from the northern end of the basin. In all the aforementioned regions, peak-to-peak MLD variations usually reach 10 m, but can exceed 20 m for the largest events. Buoyancy flux and wind stirring contribute to intraseasonal MLD fluctuations in roughly equal proportions, except for the Northern Arabian Sea in winter, where buoyancy fluxes dominate. A simple slab ocean analysis finally suggests that the impact of these MLD fluctuations on intraseasonal sea surface temperature variability is probably rather weak, because of the compensating effects of thermal capacity and sunlight penetration: a thin mixed-layer is more efficiently warmed at the surface by heat fluxes but loses more solar flux through its lower base.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aircraft altimeter and in situ measurements are used to examine relationships between altimeter backscatter and the magnitude of near-surface wind and friction velocities. Comparison of altimeter radar cross section with wind speed is made through the modified Chelton-Wentz algorithm. Improved agreement is found after correcting 10-m winds for both surface current and atmospheric stability. An altimeter friction velocity algorithm is derived based on the wind speed model and an open-ocean drag coefficient. Close agreement between altimeter- and in situ-derived friction velocities is found. For this dataset, quality of the altimeter inversion to surface friction velocity is comparable to that for adjusted winds and clearly better than the inversion to true 10-m wind speed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The East Asian Monsoon (EAM) is an active component of the global climate system and has a profound social and economic impact in East Asia and its surrounding countries. Its impact on regional hydrological processes may influence society through industrial water supplies, food productivity and energy use. In order to predict future rates of climate change, reliable and accurate reconstructions of regional temperature and rainfall are required from all over the world to test climate models and better predict future climate variability. Hokkaido is a region which has limited palaeo-climate data and is sensitive to climate change. Instrumental data show that the climate in Hokkaido is influenced by the East Asian Monsoon (EAM), however, instrumental data is limited to the past ~150 years. Therefore down-core climate reconstructions, prior to instrumental records, are required to provide a better understanding of the long-term behaviour of the climate drivers (e.g. the EAM, Westerlies, and teleconnections) in this region. The present study develops multi-proxy reconstructions to determine past climatic and hydrologic variability in Japan over the past 1000 years and aid in understanding the effects of the EAM and the Westerlies independently and interactively. A 250-cm long sediment core from Lake Toyoni, Hokkaido was retrieved to investigate terrestrial and aquatic input, lake temperature and hydrological changes over the past 1000-years within Lake Toyoni and its catchment using X-Ray Fluorescence (XRF) data, alkenone palaeothermometry, the molecular and hydrogen isotopic composition of higher plant waxes (δD(HPW)). Here, we conducted the first survey for alkenone biomarkers in eight lakes in the Hokkaido, Japan. We detected the occurrence of alkenones within the sediments of Lake Toyoni. We present the first lacustrine alkenone record from Japan, including genetic analysis of the alkenone producer. C37 alkenone concentrations in surface sediments are 18µg C37 g−1 of dry sediment and the dominant alkenone is C37:4. 18S rDNA analysis revealed the presence of a single alkenone producer in Lake Toyoni and thus a single calibration is used for reconstructing lake temperature based on alkenone unsaturation patterns. Temperature reconstructions over the past 1000 years suggest that lake water temperatures varies between 8 and 19°C which is in line with water temperature changes observed in the modern Lake Toyoni. The alkenone-based temperature reconstruction provides evidence for the variability of the EAM over the past 1000 years. The δD(HPW) suggest that the large fluctuations (∼40‰) represent changes in temperature and source precipitation in this region, which is ultimately controlled by the EAM system and therefore a proxy for the EAM system. In order to complement the biomarker reconstructions, the XRF data strengthen the lake temperature and hydrological reconstructions by providing information on past productivity, which is controlled by the East Asian Summer monsoon (EASM) and wind input into Lake Toyoni, which is controlled by the East Asian Winter Monsoon (EAWM) and the Westerlies. By combining the data generated from XRF, alkenone palaeothermometry and the δD(HPW) reconstructions, we provide valuable information on the EAM and the Westerlies, including; the timing of intensification and weakening, the teleconnections influencing them and the relationship between them. During the Medieval Warm Period (MWP), we find that the EASM dominated and the EAWM was suppressed, whereas, during the Little Ice Age (LIA), the influence of the EAWM dominated with time periods of increased EASM and Westerlies intensification. The El Niño Southern Oscillation (ENSO) significantly influenced the EAM; a strong EASM occurred during El Niño conditions and a strong EAWM occurred during La Niña. The North Atlantic Oscillation, on the other hand, was a key driver of the Westerlies intensification; strengthening of the Westerlies during a positive NAO phase and weakening of the Westerlies during a negative NAO phase. A key finding from this study is that our data support an anti-phase relationship between the EASM and the EAWM (e.g. the intensification of the EASM and weakening of the EAWM and vice versa) and that the EAWM and the Westerlies vary independently from each other, rather than coincide as previously suggested in other studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive data used to quantify broad soil C changes (without information about causation), coupled with intensive data used for attribution of changes to specific management practices, could form the basis of an efficient national grassland soil C monitoring network. Based on variability of extensive (USDA/NRCS pedon database) and intensive field-level soil C data, we evaluated the efficacy of future sample collection to detect changes in soil C in grasslands. Potential soil C changes at a range of spatial scales related to changes in grassland management can be verified (alpha=0.1) after 5 years with collection of 34, 224, 501 samples at the county, state, or national scales, respectively. Farm-level analysis indicates that equivalent numbers of cores and distinct groups of cores (microplots) results in lowest soil C coefficients of variation for a variety of ecosystems. Our results suggest that grassland soil C changes can be precisely quantified using current technology at scales ranging from farms to the entire nation. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-stroke outboard boat engines using total loss lubrication deposit a significant proportion of their lubricant and fuel directly into the water. The purpose of this work is to document the velocity and concentration field characteristics of a submerged swirling water jet emanating from a propeller in order to provide information on its fundamental characteristics. The properties of the jet were examined far enough downstream to be relevant to the eventual modelling of the mixing problem. Measurements of the velocity and concentration field were performed in a turbulent jet generated by a model boat propeller (0.02 m diameter) operating at 1500 rpm and 3000 rpm in a weak co-flow of 0.04 m/s. The measurements were carried out in the Zone of Established Flow up to 50 propeller diameters downstream of the propeller, which was placed in a glass-walled flume 0.4 m wide with a free surface depth of 0.15 m. The jet and scalar plume development were compared to that of a classical free round jet. Further, results pertaining to radial distribution, self similarity, standard deviation growth, maximum value decay and integral fluxes of velocity and concentration were presented and fitted with empirical correlations. Furthermore, propeller induced mixing and pollutant source concentration from a two-stroke engine were estimated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of electron heating in the high-frequency surface polariton (SP) field on the dispersion properties of the SPs considered is investigated. High frequency SPs propagate at the interface between an n-type semiconductor with finite electron pressure, and a metal. The nonlinear dispersion relation for the SPs is derived and investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The excitation of surface plasmon-polariton waves propagating across an external magnetic field (Voigt geometry) in a semiconductor-metal structure by means of the attenuated total reflection method is investigated. The phase matching conditions for the surface waves excitation in the Kretchmann configuration are derived and analyzed. The effect of different nonlinearities on the excitation of the surface waves is studied as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-linear self-interaction of the potential surface polaritons (SP) which is due to the free carriers dispersion law where nonparabolicity is studied. The SP propagate at the interface between n-type semiconductor and a metal. The self interaction of the SP is shown to be different in semiconductors with normal and inverse zone structures. The results of the SP field envelope evolution are given. The obtained nonlinear frequency shift has been compared with shifts which are due to another self-interaction mechanisms. This comparison shows that the nonlinear self-interaction mechanism, which is due to free carriers spectrum nonparabolicity, is especially significant in narrow-gap semiconductor materials.