958 resultados para Urban environment
Resumo:
Exposure to atmospheric ultrafine particles (UFPs, D<100 nm) has been an increasingly concern because of their potential impact one health. Motor vehicle emissions are considered as one of the major source of UFPin urban airshed, as the combustion of both petrol and diesel engine leads to emission of particles which are predominantly in this size range (Ban-Weiss et al, 2010; Morawska et al, 2008). New particle formations (NPFs) and major facilities such as airport or seaport has also been identified as major sources of UFPs in urban airshed (Cheung et al, 2010; González et al, 2011; Mazaheri et al, 2013). However, contribution of those urban sources to ambient UFP concentrations has not been comprehensively characterized.
Resumo:
This research seeks to demonstrate the ways in which urban design factors, individually and in various well-considered arrangements, stimulate and encourage social activities in Brisbane’s public squares through the mapping and analysis of user behaviour. No design factors contribute to public space in isolation, so the combinations of different design factors, contextual and social impacts as well as local climate are considered to be highly influential to the way in which Brisbane’s public engages with public space. It is this local distinctiveness that this research seeks to ascertain. The research firstly pinpoints and consolidates the design factors identified and recommended in existing literature and then maps the identified factors as they are observed at case study sites in Brisbane. This is then set against observational mappings of the site’s corresponding user activities and engagement. These mappings identify a number of patterns of behaviour; pertinently that “activated” areas of social gathering actively draw people in, and the busier a space is, both the frequency and duration of people lingering in the space increases. The study finds that simply providing respite from the urban environment (and/or weather conditions) does not adequately encourage social interaction and that people friendly design factors can instigate social activities which, if coexisting in a public space, can themselves draw in further users of the space. One of the primary conclusions drawn from these observations is that members of the public in Brisbane are both actively and passively social and often seek out locations where “people-watching” and being around other members of the public (both categorised as passive social activities) are facilitated and encouraged. Spaces that provide respite from the urban environment but that do not sufficiently accommodate social connections and activities are less favourable and are often left abandoned despite their comparable tranquillity and available space.
Resumo:
Background The environment is inextricably related to mental health. Recent research replicates findings of a significant, linear correlation between a childhood exposure to the urban environment and psychosis. Related studies also correlate the urban environment and aberrant brain morphologies. These findings challenge common beliefs that the mind and brain remain neutral in the face of worldly experience. Aim There is a signature within these neurological findings that suggests that specific features of design cause and trigger mental illness. The objective in this article is to work backward from the molecular dynamics to identify features of the designed environment that may either trigger mental illness or protect against it. Method This review analyzes the discrete functions putatively assigned to the affected brain areas and a neurotransmitter called dopamine, which is the primary target of most antipsychotic medications. The intention is to establish what the correlations mean in functional terms, and more specifically, how this relates to the phenomenology of urban experience. In doing so, environmental mental illness risk factors are identified. Conclusions Having established these relationships, the review makes practical recommendations for those in public health who wish to use the environment itself as a tool to improve the mental health of a community through design.
Resumo:
Emerging contaminants (ECs) are chemical compounds commonly present in water. It is only recently that this family of compounds is being recognized as significant water pollutants (. ECs include a wide variety of chemicals such as pharmaceutical and personal care products (PPCPs), pesticides, hydrocarbons and hormones, among others, that once released into the environment exert adverse impacts on the human and wildlife endocrine system. Natural attenuation and conventional treatment processes are not capable of removing these micro-pollutants detected in wastewater influent and effluent and surface and drinking water. The main challenges related with presence of ECs in stormwater in the context of reuse are: a) Development of suitable laboratory test methodologies and protocols for ECs identification and quantification b) Identification of the sources of ECs in the urban environment; c) Understanding their impacts on human and/or ecosystem health; and d). Development of cost-effective removal technologies which are appropriate for large as well as small-scale application.
Resumo:
Toxic chemical pollutants such as heavy metals (HMs) are commonly present in urban stormwater. These pollutants can pose a significant risk to human health and hence a significant barrier for urban stormwater reuse. The primary aim of this study was to develop an approach for quantitatively assessing the risk to human health due to the presence of HMs in stormwater. This approach will lead to informed decision making in relation to risk management of urban stormwater reuse, enabling efficient implementation of appropriate treatment strategies. In this study, risks to human health from heavy metals were assessed as hazard index (HI) and quantified as a function of traffic and land use related parameters. Traffic and land use are the primary factors influencing heavy metal loads in the urban environment. The risks posed by heavy metals associated with total solids and fine solids (<150µm) were considered to represent the maximum and minimum risk levels, respectively. The study outcomes confirmed that Cr, Mn and Pb pose the highest risks, although these elements are generally present in low concentrations. The study also found that even though the presence of a single heavy metal does not pose a significant risk, the presence of multiple heavy metals could be detrimental to human health. These findings suggest that stormwater guidelines should consider the combined risk from multiple heavy metals rather than the threshold concentration of an individual species. Furthermore, it was found that risk to human health from heavy metals in stormwater is significantly influenced by traffic volume and the risk associated with stormwater from industrial areas is generally higher than that from commercial and residential areas.
Resumo:
Building integrated photovoltaics (BIPV) has potential of becoming the mainstream of renewable energy in the urban environment. BIPV has significant influence on the thermal performance of building envelope and changes radiation energy balance by adding or replacing conventional building elements in urban areas. PTEBU model was developed to evaluate the effect of photovoltaic (PV) system on the microclimate of urban canopy layer. PTEBU model consists of four sub-models: PV thermal model, PV electrical performance model, building energy consumption model, and urban canyon energy budget model. PTEBU model is forced with temperature, wind speed, and solar radiation above the roof level and incorporates detailed data of PV system and urban canyon in Tianjin, China. The simulation results show that PV roof and PV façade with ventilated air gap significantly change the building surface temperature and sensible heat flux density, but the air temperature of urban canyon with PV module varies little compared with the urban canyon of no PV. The PV module also changes the magnitude and pattern of diurnal variation of the storage heat flux and the net radiation for the urban canyon with PV increase slightly. The increase in the PV conversion efficiency not only improves the PV power output, but also reduces the urban canyon air temperature. © 2006.