853 resultados para Upper and Lower Bounds
Resumo:
1. Teil: Bekannte Konstruktionen. Die vorliegende Arbeit gibt zunächst einen ausführlichen Überblick über die bisherigen Entwicklungen auf dem klassischen Gebiet der Hyperflächen mit vielen Singularitäten. Die maximale Anzahl mu^n(d) von Singularitäten auf einer Hyperfläche vom Grad d im P^n(C) ist nur in sehr wenigen Fällen bekannt, im P^3(C) beispielsweise nur für d<=6. Abgesehen von solchen Ausnahmen existieren nur obere und untere Schranken. 2. Teil: Neue Konstruktionen. Für kleine Grade d ist es oft möglich, bessere Resultate zu erhalten als jene, die durch allgemeine Schranken gegeben sind. In dieser Arbeit beschreiben wir einige algorithmische Ansätze hierfür, von denen einer Computer Algebra in Charakteristik 0 benutzt. Unsere anderen algorithmischen Methoden basieren auf einer Suche über endlichen Körpern. Das Liften der so experimentell gefundenen Hyperflächen durch Ausnutzung ihrer Geometrie oder Arithmetik liefert beispielsweise eine Fläche vom Grad 7 mit $99$ reellen gewöhnlichen Doppelpunkten und eine Fläche vom Grad 9 mit 226 gewöhnlichen Doppelpunkten. Diese Konstruktionen liefern die ersten unteren Schranken für mu^3(d) für ungeraden Grad d>5, die die allgemeine Schranke übertreffen. Unser Algorithmus hat außerdem das Potential, auf viele weitere Probleme der algebraischen Geometrie angewendet zu werden. Neben diesen algorithmischen Methoden beschreiben wir eine Konstruktion von Hyperflächen vom Grad d im P^n mit vielen A_j-Singularitäten, j>=2. Diese Beispiele, deren Existenz wir mit Hilfe der Theorie der Dessins d'Enfants beweisen, übertreffen die bekannten unteren Schranken in den meisten Fällen und ergeben insbesondere neue asymptotische untere Schranken für j>=2, n>=3. 3. Teil: Visualisierung. Wir beschließen unsere Arbeit mit einer Anwendung unserer neuen Visualisierungs-Software surfex, die die Stärken mehrerer existierender Programme bündelt, auf die Konstruktion affiner Gleichungen aller 45 topologischen Typen reeller kubischer Flächen.
Resumo:
In this article, we develop the a priori and a posteriori error analysis of hp-version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ ℝd, d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm, which are explicit in the local mesh size and local polynomial degree of the approximating finite element method. A series of numerical experiments illustrate the performance of the proposed a posteriori error indicators within an automatic hp-adaptive refinement algorithm.
Resumo:
The logic PJ is a probabilistic logic defined by adding (noniterated) probability operators to the basic justification logic J. In this paper we establish upper and lower bounds for the complexity of the derivability problem in the logic PJ. The main result of the paper is that the complexity of the derivability problem in PJ remains the same as the complexity of the derivability problem in the underlying logic J, which is π[p/2] -complete. This implies that the probability operators do not increase the complexity of the logic, although they arguably enrich the expressiveness of the language.
Resumo:
Abstract machines provide a certain separation between platformdependent and platform-independent concerns in compilation. Many of the differences between architectures are encapsulated in the speciflc abstract machine implementation and the bytecode is left largely architecture independent. Taking advantage of this fact, we present a framework for estimating upper and lower bounds on the execution times of logic programs running on a bytecode-based abstract machine. Our approach includes a one-time, programindependent proflling stage which calculates constants or functions bounding the execution time of each abstract machine instruction. Then, a compile-time cost estimation phase, using the instruction timing information, infers expressions giving platform-dependent upper and lower bounds on actual execution time as functions of input data sizes for each program. Working at the abstract machine level makes it possible to take into account low-level issues in new architectures and platforms by just reexecuting the calibration stage instead of having to tailor the analysis for each architecture and platform. Applications of such predicted execution times include debugging/veriflcation of time properties, certiflcation of time properties in mobile code, granularity control in parallel/distributed computing, and resource-oriented specialization.
Resumo:
Compile-time program analysis techniques can be applied to Web service orchestrations to prove or check various properties. In particular, service orchestrations can be subjected to resource analysis, in which safe approximations of upper and lower resource usage bounds are deduced. A uniform analysis can be simultaneously performed for different generalized resources that can be directiy correlated with cost- and performance-related quality attributes, such as invocations of partners, network traffic, number of activities, iterations, and data accesses. The resulting safe upper and lower bounds do not depend on probabilistic assumptions, and are expressed as functions of size or length of data components from an initiating message, using a finegrained structured data model that corresponds to the XML-style of information structuring. The analysis is performed by transforming a BPEL-like representation of an orchestration into an equivalent program in another programming language for which the appropriate analysis tools already exist.
Resumo:
The Vapnik-Chervonenkis (VC) dimension is a combinatorial measure of a certain class of machine learning problems, which may be used to obtain upper and lower bounds on the number of training examples needed to learn to prescribed levels of accuracy. Most of the known bounds apply to the Probably Approximately Correct (PAC) framework, which is the framework within which we work in this paper. For a learning problem with some known VC dimension, much is known about the order of growth of the sample-size requirement of the problem, as a function of the PAC parameters. The exact value of sample-size requirement is however less well-known, and depends heavily on the particular learning algorithm being used. This is a major obstacle to the practical application of the VC dimension. Hence it is important to know exactly how the sample-size requirement depends on VC dimension, and with that in mind, we describe a general algorithm for learning problems having VC dimension 1. Its sample-size requirement is minimal (as a function of the PAC parameters), and turns out to be the same for all non-trivial learning problems having VC dimension 1. While the method used cannot be naively generalised to higher VC dimension, it suggests that optimal algorithm-dependent bounds may improve substantially on current upper bounds.
Resumo:
Conventional DEA models assume deterministic, precise and non-negative data for input and output observations. However, real applications may be characterized by observations that are given in form of intervals and include negative numbers. For instance, the consumption of electricity in decentralized energy resources may be either negative or positive, depending on the heat consumption. Likewise, the heat losses in distribution networks may be within a certain range, depending on e.g. external temperature and real-time outtake. Complementing earlier work separately addressing the two problems; interval data and negative data; we propose a comprehensive evaluation process for measuring the relative efficiencies of a set of DMUs in DEA. In our general formulation, the intervals may contain upper or lower bounds with different signs. The proposed method determines upper and lower bounds for the technical efficiency through the limits of the intervals after decomposition. Based on the interval scores, DMUs are then classified into three classes, namely, the strictly efficient, weakly efficient and inefficient. An intuitive ranking approach is presented for the respective classes. The approach is demonstrated through an application to the evaluation of bank branches. © 2013.
Resumo:
2000 Mathematics Subject Classification: 60J80, 60J20, 60J10, 60G10, 60G70, 60F99.
Resumo:
We investigate the achievable ergodic sum-rate of multi-user multiple-input multiple-output systems in Ricean fading channels. We first derive a lower bound on the average signal-to-leakage-and-noise ratio by utilizing the Mullen's inequality, which is then used to analyze the effect of channel mean information on the achievable sum-rate. With these results, a novel statistical-eigenmode space-division multipleaccess downlink transmission scheme is proposed. For this scheme, we derive an exact closed-form expression for the achievable ergodic sum-rate. Our results show that the achievable ergodic sum-rate converges to a saturation value in the high signal-to-noise ratio (SNR) region and reaches to a lower limit value in the lower Ricean K-factor range. In addition, we present tractable upper and lower bounds, which are shown to be tight for any SNR and Ricean K-factor value. Finally, the theoretical analysis is validated via numerical simulations.
Resumo:
We develop the a posteriori error estimation of interior penalty discontinuous Galerkin discretizations for H(curl)-elliptic problems that arise in eddy current models. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The proposed a posteriori error estimator is validated by numerical experiments, illustrating its reliability and efficiency for a range of test problems.
Resumo:
We develop the a-posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite element methods for a class of second-order quasilinear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh-dependent) energy norm. The bounds are explicit in the local mesh size and the local degree of the approximating polynomial. The performance of the proposed estimators within an automatic hp-adaptive refinement procedure is studied through numerical experiments.
Resumo:
Given a Boolean function , we say a triple (x, y, x + y) is a triangle in f if . A triangle-free function contains no triangle. If f differs from every triangle-free function on at least points, then f is said to be -far from triangle-free. In this work, we analyze the query complexity of testers that, with constant probability, distinguish triangle-free functions from those -far from triangle-free. Let the canonical tester for triangle-freeness denotes the algorithm that repeatedly picks x and y uniformly and independently at random from , queries f(x), f(y) and f(x + y), and checks whether f(x) = f(y) = f(x + y) = 1. Green showed that the canonical tester rejects functions -far from triangle-free with constant probability if its query complexity is a tower of 2's whose height is polynomial in . Fox later improved the height of the tower in Green's upper bound to . A trivial lower bound of on the query complexity is immediate. In this paper, we give the first non-trivial lower bound for the number of queries needed. We show that, for every small enough , there exists an integer such that for all there exists a function depending on all n variables which is -far from being triangle-free and requires queries for the canonical tester. We also show that the query complexity of any general (possibly adaptive) one-sided tester for triangle-freeness is at least square root of the query complexity of the corresponding canonical tester. Consequently, this means that any one-sided tester for triangle-freeness must make at least queries.
Resumo:
We consider Ricci flow invariant cones C in the space of curvature operators lying between the cones ``nonnegative Ricci curvature'' and ``nonnegative curvature operator''. Assuming some mild control on the scalar curvature of the Ricci flow, we show that if a solution to the Ricci flow has its curvature operator which satisfies R + epsilon I is an element of C at the initial time, then it satisfies R + epsilon I is an element of C on some time interval depending only on the scalar curvature control. This allows us to link Gromov-Hausdorff convergence and Ricci flow convergence when the limit is smooth and R + I is an element of C along the sequence of initial conditions. Another application is a stability result for manifolds whose curvature operator is almost in C. Finally, we study the case where C is contained in the cone of operators whose sectional curvature is nonnegative. This allows us to weaken the assumptions of the previously mentioned applications. In particular, we construct a Ricci flow for a class of (not too) singular Alexandrov spaces.