980 resultados para Uniformly Convex


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider scattering of a time harmonic incident plane wave by a convex polygon with piecewise constant impedance boundary conditions. Standard finite or boundary element methods require the number of degrees of freedom to grow at least linearly with respect to the frequency of the incident wave in order to maintain accuracy. Extending earlier work by Chandler-Wilde and Langdon for the sound soft problem, we propose a novel Galerkin boundary element method, with the approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh with smaller elements closer to the corners of the polygon. Theoretical analysis and numerical results suggest that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency of the incident wave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the scattering of a time-harmonic acoustic incident plane wave by a sound soft convex curvilinear polygon with Lipschitz boundary. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the number of degrees of freedom required to achieve a prescribed level of accuracy grows at least linearly with respect to the frequency of the incident wave. Here we propose a novel Galerkin boundary element method with a hybrid approximation space, consisting of the products of plane wave basis functions with piecewise polynomials supported on several overlapping meshes; a uniform mesh on illuminated sides, and graded meshes refined towards the corners of the polygon on illuminated and shadow sides. Numerical experiments suggest that the number of degrees of freedom required to achieve a prescribed level of accuracy need only grow logarithmically as the frequency of the incident wave increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized asymptotic expansion in the far field for the problem of cylindrical wave reflection at a homogeneous impedance plane is derived. The expansion is shown to be uniformly valid over all angles of incidence and values of surface impedance, including the limiting cases of zero and infinite impedance. The technique used is a rigorous application of the modified steepest descent method of Ot

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We establish Maximum Principles which apply to vectorial approximate minimizers of the general integral functional of Calculus of Variations. Our main result is a version of the Convex Hull Property. The primary advance compared to results already existing in the literature is that we have dropped the quasiconvexity assumption of the integrand in the gradient term. The lack of weak Lower semicontinuity is compensated by introducing a nonlinear convergence technique, based on the approximation of the projection onto a convex set by reflections and on the invariance of the integrand in the gradient term under the Orthogonal Group. Maximum Principles are implied for the relaxed solution in the case of non-existence of minimizers and for minimizing solutions of the Euler–Lagrange system of PDE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose and analyze a hybrid $hp$ boundary element method for the solution of problems of high frequency acoustic scattering by sound-soft convex polygons, in which the approximation space is enriched with oscillatory basis functions which efficiently capture the high frequency asymptotics of the solution. We demonstrate, both theoretically and via numerical examples, exponential convergence with respect to the order of the polynomials, moreover providing rigorous error estimates for our approximations to the solution and to the far field pattern, in which the dependence on the frequency of all constants is explicit. Importantly, these estimates prove that, to achieve any desired accuracy in the computation of these quantities, it is sufficient to increase the number of degrees of freedom in proportion to the logarithm of the frequency as the frequency increases, in contrast to the at least linear growth required by conventional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a dataset of two-dimensional points in the plane with integer coordinates, the method proposed reduces a set of n points down to a set of s points s ≤ n, such that the convex hull on the set of s points is the same as the convex hull of the original set of n points. The method is O(n). It helps any convex hull algorithm run faster. The empirical analysis of a practical case shows a percentage reduction in points of over 98%, that is reflected as a faster computation with a speedup factor of at least 4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mixed integer continuous nonlinear model and a solution method for the problem of orthogonally packing identical rectangles within an arbitrary convex region are introduced in the present work. The convex region is assumed to be made of an isotropic material in such a way that arbitrary rotations of the items, preserving the orthogonality constraint, are allowed. The solution method is based on a combination of branch and bound and active-set strategies for bound-constrained minimization of smooth functions. Numerical results show the reliability of the presented approach. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bipartite graph G = (V, W, E) is convex if there exists an ordering of the vertices of W such that, for each v. V, the neighbors of v are consecutive in W. We describe both a sequential and a BSP/CGM algorithm to find a maximum independent set in a convex bipartite graph. The sequential algorithm improves over the running time of the previously known algorithm and the BSP/CGM algorithm is a parallel version of the sequential one. The complexity of the algorithms does not depend on |W|.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demands of image processing related systems are robustness, high recognition rates, capability to handle incomplete digital information, and magnanimous flexibility in capturing shape of an object in an image. It is exactly here that, the role of convex hulls comes to play. The objective of this paper is twofold. First, we summarize the state of the art in computational convex hull development for researchers interested in using convex hull image processing to build their intuition, or generate nontrivial models. Secondly, we present several applications involving convex hulls in image processing related tasks. By this, we have striven to show researchers the rich and varied set of applications they can contribute to. This paper also makes a humble effort to enthuse prospective researchers in this area. We hope that the resulting awareness will result in new advances for specific image recognition applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Convex combinations of long memory estimates using the same data observed at different sampling rates can decrease the standard deviation of the estimates, at the cost of inducing a slight bias. The convex combination of such estimates requires a preliminary correction for the bias observed at lower sampling rates, reported by Souza and Smith (2002). Through Monte Carlo simulations, we investigate the bias and the standard deviation of the combined estimates, as well as the root mean squared error (RMSE), which takes both into account. While comparing the results of standard methods and their combined versions, the latter achieve lower RMSE, for the two semi-parametric estimators under study (by about 30% on average for ARFIMA(0,d,0) series).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper I will investigate the conditions under which a convex capacity (or a non-additive probability which exhibts uncertainty aversion) can be represented as a squeeze of a(n) (additive) probability measure associate to an uncertainty aversion function. Then I will present two alternatives forrnulations of the Choquet integral (and I will extend these forrnulations to the Choquet expected utility) in a parametric approach that will enable me to do comparative static exercises over the uncertainty aversion function in an easy way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a class of sampling-based decomposition methods to solve risk-averse multistage stochastic convex programs. We prove a formula for the computation of the cuts necessary to build the outer linearizations of the recourse functions. This formula can be used to obtain an efficient implementation of Stochastic Dual Dynamic Programming applied to convex nonlinear problems. We prove the almost sure convergence of these decomposition methods when the relatively complete recourse assumption holds. We also prove the almost sure convergence of these algorithms when applied to risk-averse multistage stochastic linear programs that do not satisfy the relatively complete recourse assumption. The analysis is first done assuming the underlying stochastic process is interstage independent and discrete, with a finite set of possible realizations at each stage. We then indicate two ways of extending the methods and convergence analysis to the case when the process is interstage dependent.