Constraint qualifications in convex vector semi-infinite optimization
Contribuinte(s) |
Universidad de Alicante. Departamento de Matemáticas Laboratorio de Optimización (LOPT) |
---|---|
Data(s) |
17/03/2016
17/03/2016
16/02/2016
|
Resumo |
Convex vector (or multi-objective) semi-infinite optimization deals with the simultaneous minimization of finitely many convex scalar functions subject to infinitely many convex constraints. This paper provides characterizations of the weakly efficient, efficient and properly efficient points in terms of cones involving the data and Karush–Kuhn–Tucker conditions. The latter characterizations rely on different local and global constraint qualifications. The results in this paper generalize those obtained by the same authors on linear vector semi-infinite optimization problems. |
Identificador |
European Journal of Operational Research. 2016, 249(1): 32-40. doi:10.1016/j.ejor.2015.08.062 0377-2217 (Print) 1872-6860 (Online) http://hdl.handle.net/10045/53846 10.1016/j.ejor.2015.08.062 |
Idioma(s) |
eng |
Publicador |
Elsevier |
Relação |
http://dx.doi.org/10.1016/j.ejor.2015.08.062 |
Direitos |
© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the International Federation of Operational Research Societies (IFORS) info:eu-repo/semantics/openAccess |
Palavras-Chave | #Multiobjective optimization #Convex optimization #Semi-infinite optimization #Constraint qualifications #Estadística e Investigación Operativa |
Tipo |
info:eu-repo/semantics/article |