Constraint qualifications in convex vector semi-infinite optimization


Autoria(s): Goberna, Miguel A.; Guerra Vázquez, Francisco; Todorov, Maxim I.
Contribuinte(s)

Universidad de Alicante. Departamento de Matemáticas

Laboratorio de Optimización (LOPT)

Data(s)

17/03/2016

17/03/2016

16/02/2016

Resumo

Convex vector (or multi-objective) semi-infinite optimization deals with the simultaneous minimization of finitely many convex scalar functions subject to infinitely many convex constraints. This paper provides characterizations of the weakly efficient, efficient and properly efficient points in terms of cones involving the data and Karush–Kuhn–Tucker conditions. The latter characterizations rely on different local and global constraint qualifications. The results in this paper generalize those obtained by the same authors on linear vector semi-infinite optimization problems.

Identificador

European Journal of Operational Research. 2016, 249(1): 32-40. doi:10.1016/j.ejor.2015.08.062

0377-2217 (Print)

1872-6860 (Online)

http://hdl.handle.net/10045/53846

10.1016/j.ejor.2015.08.062

Idioma(s)

eng

Publicador

Elsevier

Relação

http://dx.doi.org/10.1016/j.ejor.2015.08.062

Direitos

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the International Federation of Operational Research Societies (IFORS)

info:eu-repo/semantics/openAccess

Palavras-Chave #Multiobjective optimization #Convex optimization #Semi-infinite optimization #Constraint qualifications #Estadística e Investigación Operativa
Tipo

info:eu-repo/semantics/article