Primal Attainment in Convex Infinite Optimization Duality


Autoria(s): Goberna, Miguel A.; López Cerdá, Marco A.; Volle, Michel
Contribuinte(s)

Universidad de Alicante. Departamento de Estadística e Investigación Operativa

Laboratorio de Optimización (LOPT)

Data(s)

12/06/2015

12/06/2015

2014

Resumo

This article provides results guarateeing that the optimal value of a given convex infinite optimization problem and its corresponding surrogate Lagrangian dual coincide and the primal optimal value is attainable. The conditions ensuring converse strong Lagrangian (in short, minsup) duality involve the weakly-inf-(locally) compactness of suitable functions and the linearity or relative closedness of some sets depending on the data. Applications are given to different areas of convex optimization, including an extension of the Clark-Duffin Theorem for ordinary convex programs.

This research was partially supported by MINECO of Spain, Grant MTM2011-29064-C03-02, and Generalitat Valenciana, Grant ACOMP/2013/062.

Identificador

Journal of Convex Analysis. 2014, 21(4): 1043-1064

0944-6532

http://hdl.handle.net/10045/47499

Idioma(s)

eng

Publicador

Heldermann Verlag

Relação

http://www.heldermann.de/JCA/JCA21/JCA214/jca21056.htm

Direitos

© Heldermann Verlag

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #Convex infinite programming #Converse strong duality #Minsup duality #Estadística e Investigación Operativa
Tipo

info:eu-repo/semantics/article