Primal Attainment in Convex Infinite Optimization Duality
Contribuinte(s) |
Universidad de Alicante. Departamento de Estadística e Investigación Operativa Laboratorio de Optimización (LOPT) |
---|---|
Data(s) |
12/06/2015
12/06/2015
2014
|
Resumo |
This article provides results guarateeing that the optimal value of a given convex infinite optimization problem and its corresponding surrogate Lagrangian dual coincide and the primal optimal value is attainable. The conditions ensuring converse strong Lagrangian (in short, minsup) duality involve the weakly-inf-(locally) compactness of suitable functions and the linearity or relative closedness of some sets depending on the data. Applications are given to different areas of convex optimization, including an extension of the Clark-Duffin Theorem for ordinary convex programs. This research was partially supported by MINECO of Spain, Grant MTM2011-29064-C03-02, and Generalitat Valenciana, Grant ACOMP/2013/062. |
Identificador |
Journal of Convex Analysis. 2014, 21(4): 1043-1064 0944-6532 |
Idioma(s) |
eng |
Publicador |
Heldermann Verlag |
Relação |
http://www.heldermann.de/JCA/JCA21/JCA214/jca21056.htm |
Direitos |
© Heldermann Verlag info:eu-repo/semantics/restrictedAccess |
Palavras-Chave | #Convex infinite programming #Converse strong duality #Minsup duality #Estadística e Investigación Operativa |
Tipo |
info:eu-repo/semantics/article |