971 resultados para Space Optical Interconnects
Resumo:
Wafer bonding is regardless of lattice mismatch in the integration of dissimilar semiconductor materials. This technology differs from the heteroepitaxy mainly in the mechanism of generating dislocations at the interface. A model of dislocations at the bonded interface is proposed in this paper. Edge-like dislocations, which most efficiently relax the strain, are predominant at the bonded interface. But the thermal stress associated with large thermal expansion misfit may drive dislocations away from the bonded interface upon cooling.
Resumo:
In this paper we proposed a single ridge waveguide electroabsorption modulated distributed feedback laser (EML) for long-haul high-speed optical fiber communication system. This EML was successfully fabricated by two step metal organic vapor phase epitaxy (MOVPE) including selective area growth (SAG) and helium partially implantation. No obvious changes of the threshold current (< 0.2 mA), extinction ratio (< 0.1 dB), output power (< 0.2 dBm) and isolation resistance were achieved in the preliminary aging test. With 2.5 Gb/s NRZ modulation, no power penalty was observed after the optical signal was transmitted through 280 Km normal single mode fiber.
Resumo:
Silicon-on insulator (SOI) is an attractive platform for the fabrication of optoelectronic integrated circuit. Thin cladding layers (< 1.0
Resumo:
A novel crosslinkable polyurethane is used as the core layer of the electro-optic(E-O) modulator. The refractive index and dispersion of this material have been detected by analyzing the F-P oscillation in transmission spectra. Calculated results from the effective index method are given to design the Mach-Zehnder and straight 5-layer ridge wave-guide device (including the metal electrodes). With light at 1.31 mum being fiber coupled into waveguide, the mode properties of these devices have been demonstrated in a micron control system. The guided mode is accordant with the theoretical analysis.
Resumo:
The investigations on GaAs/AlGaAs multiple quantum well self electro-optic effect device (SEED) arrays for optoelectronic smart pixels are reported. The hybrid integration of GaAs/AlGaAs multiple quantum well devices flip-chip bonding directly over 1 mu m silicon CMOS circuits are demonstrated. The GaAs/AlGaAs multiple quantum well devices are designed for 850nm operation. The measurement results under applied biases show the good optoelectronic characteristics of elements in SEED arrays. The 4x4 optoelectronic crossbar structure consisting of hybrid CMOS-SEED smart pixels have been designed, which could be potentially used in optical interconnects for multiple processors.
Resumo:
Resonant-cavity-enhanced (RCE) photodetectors have been demonstrated to be able to improve the bandwidth-efficiency product. We report one top-illumination and one bottom-illumination SiGe/Si multiple quantum-well (MQW) RCE photodetectors fabricated on a separation-by-implanted-oxygen (SIMOX) wafer operating near 1300nm, The buried oxide layer in SIMOX is used as a mirror to form a vertical cavity with the silicon dioxide/silicon Bragg reflector deposited on the top surface. A peak responsivity with a reverse bias of 5V is measured 10.2mA/W at 1285nm, and a full-width at half maximum of 25nm for the top-illumination RCE photodetector, and 19mA/W at 1305nm, and a full-width at half maximum of 14nm for the bottom-illumination one. The external quantum efficiency of the bottom-illumination RCE photodetector is up to 2.9% at 1305nm with a reverse bias of 25V. The responsivity of the bottom-illumination RCE photodetector is improved by two-fold compared with that of the top-illumination one.
Resumo:
This dissertation proposes and demonstrates novel smart modules to solve challenging problems in the areas of imaging, communications, and displays. The smartness of the modules is due to their ability to be able to adapt to changes in operating environment and application using programmable devices, specifically, electronically variable focus lenses (ECVFLs) and digital micromirror devices (DMD). The proposed modules include imagers for laser characterization and general purpose imaging which smartly adapt to changes in irradiance, optical wireless communication systems which can adapt to the number of users and to changes in link length, and a smart laser projection display that smartly adjust the pixel size to achieve a high resolution projected image at each screen distance. The first part of the dissertation starts with the proposal of using an ECVFL to create a novel multimode laser beam characterizer for coherent light. This laser beam characterizer uses the ECVFL and a DMD so that no mechanical motion of optical components along the optical axis is required. This reduces the mechanical motion overhead that traditional laser beam characterizers have, making this laser beam characterizer more accurate and reliable. The smart laser beam characterizer is able to account for irradiance fluctuations in the source. Using image processing, the important parameters that describe multimode laser beam propagation have been successfully extracted for a multi-mode laser test source. Specifically, the laser beam analysis parameters measured are the M2 parameter, w0 the minimum beam waist, and zR the Rayleigh range. Next a general purpose incoherent light imager that has a high dynamic range (>100 dB) and automatically adjusts for variations in irradiance in the scene is proposed. Then a data efficient image sensor is demonstrated. The idea of this smart image sensor is to reduce the bandwidth needed for transmitting data from the sensor by only sending the information which is required for the specific application while discarding the unnecessary data. In this case, the imager demonstrated sends only information regarding the boundaries of objects in the image so that after transmission to a remote image viewing location, these boundaries can be used to map out objects in the original image. The second part of the dissertation proposes and demonstrates smart optical communications systems using ECVFLs. This starts with the proposal and demonstration of a zero propagation loss optical wireless link using visible light with experiments covering a 1 to 4 m range. By adjusting the focal length of the ECVFLs for this directed line-of-sight link (LOS) the laser beam propagation parameters are adjusted such that the maximum amount of transmitted optical power is captured by the receiver for each link length. This power budget saving enables a longer achievable link range, a better SNR/BER, or higher power efficiency since more received power means the transmitted power can be reduced. Afterwards, a smart dual mode optical wireless link is proposed and demonstrated using a laser and LED coupled to the ECVFL to provide for the first time features of high bandwidths and wide beam coverage. This optical wireless link combines the capabilities of smart directed LOS link from the previous section with a diffuse optical wireless link, thus achieving high data rates and robustness to blocking. The proposed smart system can switch from LOS mode to Diffuse mode when blocking occurs or operate in both modes simultaneously to accommodate multiple users and operate a high speed link if one of the users requires extra bandwidth. The last part of this section presents the design of fibre optic and free-space optical switches which use ECVFLs to deflect the beams to achieve switching operation. These switching modules can be used in the proposed optical wireless indoor network. The final section of the thesis presents a novel smart laser scanning display. The ECVFL is used to create the smallest beam spot size possible for the system designed at the distance of the screen. The smart laser scanning display increases the spatial resoluti on of the display for any given distance. A basic smart display operation has been tested for red light and a 4X improvement in pixel resolution for the image has been demonstrated.
Resumo:
A multiuser dual-hop relaying system over mixed radio frequency/free-space optical (RF/FSO) links is investigated. Specifically, the system consists of m single-antenna sources, a relay node equipped with n≥ m receive antennas and a single photo-aperture transmitter, and one destination equipped with a single photo-detector. RF links are used for the simultaneous data transmission from multiple sources to the relay. The relay operates under the decode-and-forward protocol and utilizes the popular V-BLAST technique by successively decoding each user's transmitted stream. Two common norm-based orderings are adopted, i.e., the streams are decoded in an ascending or a descending order. After V-BLAST, the relay retransmits the decoded information to the destination via a point-to-point FSO link in m consecutive timeslots. Analytical expressions for the end-to-end outage probability and average symbol error probability of each user are derived, while closed-form asymptotic expressions are also presented. Capitalizing on the derived results, some engineering insights are manifested, such as the coding and diversity gain of each user, the impact of the pointing error displacement on the FSO link and the V-BLAST ordering effectiveness at the relay.
Resumo:
Holographic technology is at the dawn of quick evolution in various new areas including holographic data storage, holographic optical elements, artificial intelligence, optical interconnects, optical correlators, commerce, medical practice, holographic weapon sight, night vision goggles and games etc. One of the major obstacles for the success of holographic technology to a large extent is the lack of suitable recording medium. Compared with other holographic materials such as dichromated gelatin and silver halide emulsions, photopolymers have the great advantage of recording and reading holograms in real time and the spectral sensitivity could be easily shifted to the type of recording laser used by simply changing the sensitizing dye. Also these materials possess characteristics such as good light sensitivity, real time image development, large dynamic range, good optical properties, format flexibility, and low cost. This thesis describes the attempts made to fabricate highly economic photopolymer films for various holographic applications. In the present work, Poly (vinyl alcohol) (PVA) and poly (vinyl chloride) (PVC) are selected as the host polymer matrices and methylene blue (MB) is used as the photosensitizing dye. The films were fabricated using gravity settling method. No chemical treatment or pre/post exposures were applied to the films. As the outcome of the work, photopolymer films with more than 70% efficiency, a permanent recording material which required no fixing process, a reusable recording material etc. were fabricated.
Resumo:
Focusing optical beams on a target through random propagation media is very important in many applications such as free space optical communica- tions and laser weapons. Random media effects such as beam spread and scintillation can degrade the optical system's performance severely. Compensation schemes are needed in these applications to overcome these random media effcts. In this research, we investigated the optimal beams for two different optimization criteria: one is to maximize the concentrated received intensity and the other is to minimize the scintillation index at the target plane. In the study of the optimal beam to maximize the weighted integrated intensity, we derive a similarity relationship between pupil-plane phase screen and extended Huygens-Fresnel model, and demonstrate the limited utility of maximizing the average integrated intensity. In the study ofthe optimal beam to minimize the scintillation index, we derive the first- and second-order moments for the integrated intensity of multiple coherent modes. Hermite-Gaussian and Laguerre-Gaussian modes are used as the coherent modes to synthesize an optimal partially coherent beam. The optimal beams demonstrate evident reduction of scintillation index, and prove to be insensitive to the aperture averaging effect.
Resumo:
Protecting signals is one of the main tasks in information transmission. A large number of different methods have been employed since many centuries ago. Most of them have been based on the use of certain signal added to the original one. When the composed signal is received, if the added signal is known, the initial information may be obtained. The main problem is the type of masking signal employed. One possibility is the use of chaotic signals, but they have a first strong limitation: the need to synchronize emitter and receiver. Optical communications systems, based on chaotic signals, have been proposed in a large number of papers. Moreover, because most of the communication systems are digital and conventional chaos generators are analogue, a conversion analogue-digital is needed. In this paper we will report a new system where the digital chaos is obtained from an optically programmable logic structure. This structure has been employed by the authors in optical computing and some previous results in chaotic signals have been reported. The main advantage of this new system is that an analogue-digital conversion is not needed. Previous works by the authors employed Self-Electrooptical Effect Devices but in this case more conventional structures, as semiconductor laser amplifiers, have been employed. The way to analyze the characteristics of digital chaotic signals will be reported as well as the method to synchronize the chaos generators located in the emitter and in the receiver.
Resumo:
Eye-safety requirements in important applications like LIDAR or Free Space Optical Communications make specifically interesting the generation of high power, short optical pulses at 1.5 um. Moreover, high repetition rates allow reducing the error and/or the measurement time in applications involving pulsed time-of-flight measurements, as range finders, 3D scanners or traffic velocity controls. The Master Oscillator Power Amplifier (MOPA) architecture is an interesting source for these applications since large changes in output power can be obtained at GHz rates with a relatively small modulation of the current in the Master Oscillator (MO). We have recently demonstrated short optical pulses (100 ps) with high peak power (2.7 W) by gain switching the MO of a monolithically integrated 1.5 um MOPA. Although in an integrated MOPA the laser and the amplifier are ideally independent devices, compound cavity effects due to the residual reflectance at the different interfaces are often observed, leading to modal instabilities such as self-pulsations.
Resumo:
The performance of multiuser dual-hop relaying over mixed radio frequency/free-space optical (RF/FSO) links is investigated. RF links are used for the simultaneous data transmission from m single-antenna sources to the relay, which is equipped with n ≥ m receive antennas and a photo-aperture transmitter. The relay operates under the decode-and-forward protocol and utilizes the popular ordered V-BLAST technique to successively decode each user's transmitted stream. A common norm-based ordering approach is adopted, where the streams are decoded in an ascending order. After the V-BLAST decoding, the relay retransmits the initial information to the destination, which is equipped with a photo-detector, via a point-to-point FSO link in m consecutive timeslots. Analytical expressions for the end-to-end outage probability and average symbol error probability of each user are derived. Some engineering insights are manifested, such as the diversity order, the impact of the pointing error displacement on the FSO link and the severity on the turbulence-induced channel fading.
Resumo:
The concepts of light shelves consist of windows that have face towards the sun, which receive a vast quantity of energy that could be used for healthy day lighting. This paper debates a main assessment, investigates the optimization of daylight requirement by means of light shelves system. An experimental test was carried out assessing the measurements and lighting simulations of a model of a building in order to elucidate the characteristics of indoor lighting. Light shelf is an architectural element that permits daylight to enter deep into a building. It constitutes an optimal solution for an incorrect building orientation and less sunny days. The essential objective of this study is to highlight the vital role of light shelves in residential buildings in northern Europa where the requirement is to improve the daylight in the interior functional spaces. The main objects of this paper are to investigate the effect of daylight in the interior functional spaces using light shelves, the effect of natural light diffusion in interior space in the period of low daylight season, and glare effect in this field. This paper investigates a procedure for analysing the daylight performance using software habitat function
Resumo:
In this thesis, we will introduce the innovative concept of a plenoptic sensor that can determine the phase and amplitude distortion in a coherent beam, for example a laser beam that has propagated through the turbulent atmosphere.. The plenoptic sensor can be applied to situations involving strong or deep atmospheric turbulence. This can improve free space optical communications by maintaining optical links more intelligently and efficiently. Also, in directed energy applications, the plenoptic sensor and its fast reconstruction algorithm can give instantaneous instructions to an adaptive optics (AO) system to create intelligent corrections in directing a beam through atmospheric turbulence. The hardware structure of the plenoptic sensor uses an objective lens and a microlens array (MLA) to form a mini “Keplerian” telescope array that shares the common objective lens. In principle, the objective lens helps to detect the phase gradient of the distorted laser beam and the microlens array (MLA) helps to retrieve the geometry of the distorted beam in various gradient segments. The software layer of the plenoptic sensor is developed based on different applications. Intuitively, since the device maximizes the observation of the light field in front of the sensor, different algorithms can be developed, such as detecting the atmospheric turbulence effects as well as retrieving undistorted images of distant objects. Efficient 3D simulations on atmospheric turbulence based on geometric optics have been established to help us perform optimization on system design and verify the correctness of our algorithms. A number of experimental platforms have been built to implement the plenoptic sensor in various application concepts and show its improvements when compared with traditional wavefront sensors. As a result, the plenoptic sensor brings a revolution to the study of atmospheric turbulence and generates new approaches to handle turbulence effect better.