270 resultados para Scaffolding.
Resumo:
This thesis investigated how a year-4 teacher used a pedagogical approach referred to as the Gradual Release of Responsibility (GRR) model of instruction for teaching Science Inquiry Skills in a primary classroom. Through scaffolding her students' learning using the GRR, the teacher guided her students towards developing an understanding about Scientific Inquiry leading to the foundations of scientific literacy. A learning environment was established in which students engaged in rich conversations, designed and conducted experiments using fair testing procedures, analysed and offered justifications for results, and negotiated knowledge claims in ways similar to some of those in the scientific community.
Resumo:
Laskowski inhibitors regulate serine proteases by an intriguing mode of action that involves deceiving the protease into synthesizing a peptide bond. Studies exploring naturally occurring Laskowski inhibitors have uncovered several structural features that convey the inhibitor's resistance to hydrolysis and exceptional binding affinity. However, in the context of Laskowski inhibitor engineering, the way that various modifications intended to fine-tune an inhibitor's potency and selectivity impact on its association and dissociation rates remains unclear. This information is important as Laskowski inhibitors are becoming increasingly used as design templates to develop new protease inhibitors for pharmaceutical applications. In this study, we used the cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), as a model system to explore how the inhibitor's sequence and structure relate to its binding kinetics and function. Using enzyme assays, MD simulations and NMR spectroscopy to study SFTI variants with diverse sequence and backbone modifications, we show that the geometry of the binding loop mainly influences the inhibitor's potency by modulating the association rate, such that variants lacking a favourable conformation show dramatic losses in activity. Additionally, we show that the inhibitor's sequence (including both the binding loop and its scaffolding) influences its potency and selectivity by modulating both the association and the dissociation rates. These findings provide new insights into protease inhibitor function and design that we apply by engineering novel inhibitors for classical serine proteases, trypsin and chymotrypsin and two kallikrein-related peptidases (KLK5 and KLK14) that are implicated in various cancers and skin diseases.
Resumo:
Higher education is faced with the challenge of strengthening students competencies for the constantly evolving technology-mediated practices of knowledge work. The knowledge creation approach to learning (Paavola et al., 2004; Hakkarainen et al., 2004) provides a theoretical tool to address learning and teaching organized around complex problems and the development of shared knowledge objects, such as reports, products, and new practices. As in professional work practices, it appears necessary to design sufficient open-endedness and complexity for students teamwork in order to generate unpredictable and both practically and epistemologically challenging situations. The studies of the thesis examine what kinds of practices are observed when student teams engage in knowledge creating inquiry processes, how the students themselves perceive the process, and how to facilitate inquiry with technology-mediation, tutoring, and pedagogical models. Overall, 20 student teams collaboration processes and productions were investigated in detail. This collaboration took place in teams or small groups of 3-6 students from multiple domain backgrounds. Two pedagogical models were employed to provide heuristic guidance for the inquiry processes: the progressive inquiry model and the distributed project model. Design-based research methodology was employed in combination with case study as the research design. Database materials from the courses virtual learning environment constituted the main body of data, with additional data from students self-reflections and student and teacher interviews. Study I examined the role of technology mediation and tutoring in directing students knowledge production in a progressive inquiry process. The research investigated how the scale of scaffolding related to the nature of knowledge produced and the deepening of the question explanation process. In Study II, the metaskills of knowledge-creating inquiry were explored as a challenge for higher education: metaskills refers to the individual, collective, and object-centered aspects of monitoring collaborative inquiry. Study III examined the design of two courses and how the elaboration of shared objects unfolded based on the two pedagogical models. Study IV examined how the arranged concept-development project for external customers promoted practices of distributed, partially virtual, project work, and how the students coped with the knowledge creation challenge. Overall, important indicators of knowledge creating inquiry were the following: new versions of knowledge objects and artifacts demonstrated a deepening inquiry process; and the various productions were co-created through iterations of negotiations, drafting, and versioning by the team members. Students faced challenges of establishing a collective commitment, devising practices to co-author and advance their reports, dealing with confusion, and managing culturally diverse teams. The progressive inquiry model, together with tutoring and technology, facilitated asking questions, generating explanations, and refocusing lines of inquiry. The involvement of the customers was observed to provide a strong motivation for the teams. On the evidence, providing team-specific guidance, exposing students to models of scientific argumentation and expert work practices, and furnishing templates for the intended products appear to be fruitful ways to enhance inquiry processes. At the institutional level, educators do well to explore ways of developing collaboration with external customers, public organizations or companies, and between educational units in order to enhance educational practices of knowledge creating inquiry.
Resumo:
The main purpose of revascularization procedures for critical limb ischaemia (CLI) is to preserve the leg and sustain the patient s ambulatory status. Other goals are ischaemic pain relief and healing of ischaemic ulcers. Patients with CLI are usually old and have several comorbidities affecting the outcome. Revascularization for CLI is meaningless unless both life and limb are preserved. Therefore, the knowledge of both patient- and bypass-related risk factors is of paramount importance in clinical decision-making, patient selection and resource allocation. The aim of this study was to identify patient- and graft-related predictors of impaired outcome after infrainguinal bypass for CLI. The purpose was to assess the outcome of high-risk patients undergoing infrainguinal bypass and to evaluate the usefulness of specific risk scoring methods. The results of bypasses in the absence of optimal vein graft material were also evaluated, and the feasibility of the new method of scaffolding suboptimal vein grafts was assessed. The results of this study showed that renal insufficiency - not only renal failure but also moderate impairment in renal function - seems to be a significant risk factor for both limb loss and death after infrainguinal bypass in patients with CLI. Low estimated GFR (PIENEMPI KUIN 30 ml/min/1.73 m2) is a strong independent marker of poor prognosis. Furthermore, estimated GFR is a more accurate predictor of survival and leg salvage after infrainguinal bypass in CLI patients than serum creatinine level alone. We also found out that the life expectancy of octogenarians with CLI is short. In this patient group endovascular revascularization is associated with a better outcome than bypass in terms of survival, leg salvage and amputation-free survival especially in presence of coronary artery disease. This study was the first one to demonstrate that Finnvasc and modified Prevent III risk scoring methods both predict the long-term outcome of patients undergoing both surgical and endovascular infrainguinal revascularization for CLI. Both risk scoring methods are easy to use and might be helpful in clinical practice as an aid in preoperative patient selection and decision-making. Similarly than in previous studies, we found out that a single-segment great saphenous vein graft is superior to any other autologous vein graft in terms of mid-term patency and leg salvage. However, if optimal vein graft is lacking, arm vein conduits are superior to prosthetic grafts especially in infrapopliteal bypasses for CLI. We studied also the new method of scaffolding suboptimal quality vein grafts and found out that this method may enable the use of vein grafts of compromised quality otherwise unsuitable for bypass grafting. The remarkable finding was that patients with the combination of high operative risk due to severe comorbidities and risk graft have extremely poor survival, suggesting that only relatively fit patients should undergo complex bypasses with risk grafts. The results of this study can be used in clinical practice as an aid in preoperative patient selection and decision-making. In the future, the need of vascular surgery will increase significantly as the elderly and diabetic population increases, which emphasises the importance of focusing on those patients that will gain benefit from infrainguinal bypass. Therefore, the individual risk of the patient, ambulatory status, outcome expectations, the risk of bypass procedure as well as technical factors such as the suitability of outflow anatomy and the available vein material should all be assessed and taken into consideration when deciding on the best revascularization strategy.
Resumo:
Beta-Lactamase, which catalyzes beta-lactam antibiotics, is prototypical of large alpha/beta proteins with a scaffolding formed by strong noncovalent interactions. Experimentally, the enzyme is well characterized, and intermediates that are slightly less compact and having nearly the same content of secondary structure have been identified in the folding pathway. In the present study, high temperature molecular dynamics simulations have been carried out on the native enzyme in solution. Analysis of these results in terms of root mean square fluctuations in cartesian and [phi, psi] space, backbone dihedral angles and secondary structural hydrogen bonds forms the basis for an investigation of the topology of partially unfolded states of beta-lactamase. A differential stability has been observed for alpha-helices and beta-sheets upon thermal denaturation to putative unfolding intermediates. These observations contribute to an understanding of the folding/unfolding processes of beta-lactamases in particular, and other alpha/beta proteins in general.
Resumo:
Metallophosphoesterase-domain-containing protein 2 (MPPED2) is a highly evolutionarily conserved protein with orthologs found from worms to humans. The human MPPED2 gene is found in a region of chromosome 11 that is deleted in patients with WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) syndrome, and MPPED2 may function as a tumor suppressor. However, the precise cellular roles of MPPED2 are unknown, and its low phosphodiesterase activity suggests that substrate hydrolysis may not be its prime function. We present here the structures of MPPED2 and two mutants, which show that the poor activity of MPPED2 is not only a consequence of the substitution of an active-site histidine residue by glycine but also due to binding of AMP or GMP to the active site. This feature, enhanced by structural elements of the protein, allows MPPED2 to utilize the conserved phosphoprotein-phosphatase-like fold in a unique manner, ensuring that its enzymatic activity can be combined with a possible role as a scaffolding or adaptor protein. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Experimental conditions or the presence of interacting components can lead to variations in the structural models of macromolecules. However, the role of these factors in conformational selection is often omitted by in silico methods to extract dynamic information from protein structural models. Structures of small peptides, considered building blocks for larger macromolecular structural models, can substantially differ in the context of a larger protein. This limitation is more evident in the case of modeling large multi-subunit macromolecular complexes using structures of the individual protein components. Here we report an analysis of variations in structural models of proteins with high sequence similarity. These models were analyzed for sequence features of the protein, the role of scaffolding segments including interacting proteins or affinity tags and the chemical components in the experimental conditions. Conformational features in these structural models could be rationalized by conformational selection events, perhaps induced by experimental conditions. This analysis was performed on a non-redundant dataset of protein structures from different SCOP classes. The sequence-conformation correlations that we note here suggest additional features that could be incorporated by in silico methods to extract dynamic information from protein structural models.
Resumo:
[ES] Este proyecto tuvo una continuación en 2008, cuando se documentó la muralla interior del castillo. Este trabajo también está disponible en este repositorio. Asimismo, algunos artículos y proyectos fin de carrera hacen referencia a los datos capturados en este proyecto. En concreto, los registros relacionados son los siguientes:
Resumo:
Two novel organic-inorganic hybrid complexes [(CuX)(2)(o-phen)](infinity) (X = Br (1), Cl (2); o-phen = o-phenanthroline) have been synthesized hydrothermally and characterized structurally by elemental analyses, IR, ESR, XPS spectrum, TG analyses and single-crystal X-ray diffraction. Both title compounds exhibit novel one-dimensional chainlike copper halide scaffolding constructed by the unusual [Cu3X3] hexagon motifs by sharing opposite edges, where a single Cu site of each [Cu3X3] hexagon is chelated with N donors of o-phen group. To our knowledge, such basic o-phen-copper halide skeleton has not been reported hitherto. Moreover, TG analyses indicate that both title compounds possess high thermal stability.
Resumo:
A novel organic-inorganic hybrid complex [(CuCl)(2) (o-phen)](infinity) 1 (o-phen = o-phenanthroline) has been hydrothermally synthesized and structurally characterized by elemental analyses, XPS spectrum, TG analysis, and single-crystal X-ray diffraction. Compound I crystallizes in the monoclinic system, space group P2(1)/n, a = 3.7285(7) Angstrom, b = 19.603(4) Angstrom, c = 16.757(3) Angstrom, beta = 95.83(3)degrees, V = 1218.4(4) Angstrom(3), Z = 4, lambda(MoKalpha) = 0.71073 Angstrom (R(F) = 0.0643 for 2559 reflections). Data were collected on an R-axis RAPID diffractometer at 293 K in the range of 1.60 < θ < 27.48degrees. The title compound exhibits a one-dimensional chain-like scaffolding constructed by the unusual [Cu3Cl3] hexagon motifs by, sharing opposite edges. Only Cu(1) sites of the [Cu3Cl3] hexagon are coordinated with N donors of o-phen groups. Furthermore, the three-dimensional supermolecular architecture is formed by C-H...Cl hydrogen bonds between o-phen groups and CuCl chains.
Resumo:
Urquhart, C., Spink, S. & Thomas, R., Assessing training and professional development needs of library staff. Report for National Library of Health. (2005). Aberystwyth: Department of Information Studies, University of Wales Aberystwyth Sponsorship: National Library for Health (NHS Information Authority)
Resumo:
In this paper, we consider what is meant by elearning and contrast the delivery of material with the actual learning process using an analogy derived from Searle. A case study describes an attempt to use a groupware system in a knowledge management course that met with mixed results. The reasons for these are explored with issues regarding extrinsic and intrinsic motivation and scaffolding being considered in the elearning context
Resumo:
The proliferation of smartphones in the last decade and the number of publications in the field of authoring systems for computer-assisted learning depict a scenario that needs to be explored in order to facilitate the scaffolding of learning activities across contexts. Learning resources are traditionally designed in desktop-based authoring systems where the context is mostly restricted to the learning objective, capturing relevant case characteristics, or virtual situation models. Mobile authoring tools enable learners and teachers to foster universal access to educational resources not only providing channels to share, remix or re-contextualize these, but also capturing the context in-situ and in-time. As a further matter, authoring educational resources in a mobile context is an authentic experience where authors can link learning with their own daily life activities and reflections. The contribution of this manuscript is fourfold: first, the main barriers for ubiquitous and mobile authoring of educational resources are identified; second, recent research on mobile authoring tools is reviewed, and 10 key shortcomings of current approaches are identified; third, the design of a mobile environment to author educational resources (MAT for ARLearn) is presented, and the results of an evaluation of usability and hedonic quality are presented; fourth, conclusions and a research agenda for mobile authoring are discussed.
Resumo:
IQGAPs are cytoskeletal scaffolding proteins which link signalling pathways to the reorganisation of actin and microtubules. Human IQGAP1 has four IQ motifs each of which binds to calmodulin. The same region has been implicated in binding to two calmodulin-like proteins, the myosin essential light chain Mlc1sa and the calcium and zinc ion binding protein S100B. Using synthetic peptides corresponding to the four IQ motifs of human IQGAP1, we showed by native gel electrophoresis that only the first IQ motif interacts with Mlc1sa. This IQ motif, and also the fourth, interacts with the budding yeast myosin essential light chain Mlc1p. The first and second IQ motifs interact with S100B in the presence of calcium ions. This clearly establishes that S100B can interact with its targets through IQ motifs in addition to interacting via previously reported sequences. These results are discussed in terms of the function of IQGAP1 and IQ motif recognition.
Resumo:
A split-EGFP based bimolecular fluorescence complementation (BiFC) assay has been used to detect interactions between the Saccharomyces cerevisiae cytoskeletal scaffolding protein Iqg1p and three targets: myosin essential light chain (Mlc1p), calmodulin (Cmd1p) and the small GTPase Cdc42p. The format of the BiFC assay used ensures that the proteins are expressed at wild type levels thereby avoiding artefacts due to overexpression. This is the first direct in vivo detection of these interactions; in each case, the complex is localised to discrete regions of the yeast cytoplasm. The labelling with EGFP fragments results in changes in growth kinetics, cell size and budding frequency. This is partly due to the reassembled EGFP locking the complexes into essentially permanent interactions. The consequences of this for Iqg1p interactions and BiFC assays in general are discussed. (c) 2008 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.