931 resultados para Resolution Electron-microscopy
Resumo:
We present a novel contactless and nondestructive method called the surface electron beam induced voltage (SEBIV) method for characterizing semiconductor materials and devices. The SEBIV method is based on the detection of the surface potential induced by electron beams of scanning electron microscopy (SEM). The core part of the SEBIV detection set-up is a circular metal detector placed above the sample surface. The capacitance between the circular detector and whole surface of the sample is estimated to be about 0.64 pf It is large enough for the detection of the induced surface potential. The irradiation mode of electron beam (e-beam) influences the signal generation. When the e-beam irradiates on the surface of semiconductors continuously, a differential signal is obtained. The real distribution of surface potentials can be obtained when a pulsed e-beam with a fixed frequency is used for irradiation and a lock-in amplifier is employed for detection. The polarity of induced potential depends on the structure of potential barriers and surface states of samples. The contrast of SEBIV images in SEM changes with irradiation time and e-beam intensity.
Resumo:
A transmission electron microscopy study of triple-ribbon contrast features in a ZnTe layer grown epitaxially on a vicinal GaAs (001) substrate is reported. The ribbons go through the layer as threading dislocations near the [<(11)over bar 2>](111) or [112](<(11)over bar 1>) directions. Each of these (with a 40 nm width) has two narrow parts enclosed by three partial dislocations (with a 20 nm spacing). By contrast analysis and contrast simulation, the ribbons have been shown to be composed of two partially overlapping stacking faults. Their origin is attributed to a forced reaction between two crossing perfect misfit dislocations.
Resumo:
The diamond (100) facets deposited at initial 1.0% CH4 have been investigated using high resolution electron energy loss spectroscopy (HREELS). The diamond (100) facets grown at 800-degrees-C are terminated by CH2 radicals, and there is no detectable frequency shift compared with the characteristic frequencies of molecular subgroup CH2. Beside the CH2 vibration loss, CH bend loss (at 140 meV) of locally monohydrogenated dimer is detected for the diamond (100) facets grown at 1000-degrees-C. Dosing the (100) facets grown at 800-degrees-C with atomic hydrogen at 1*10(-6) mbar, the loss peak at 140 meV appears. It is suggested that there are enough separately vacant sites and uniformly dispersed monohydrogenated dimers on (100) facets. This structure relaxes the steric repulsion between the adjacent hydrogen atoms during the diamond (100) surface growth.
Resumo:
We report on the first study of N+ -implanted silicon on insulator by energy-filtered imaging using an Opton electron microscope CEM 902 equipped Castaing-Henry electron optical system as a spectrometer. The inelastic images, energy window set at DELTA-E = 16 eV and DELTA-E = 25 eV according to plasmon energy loss of crystal Si and of silicon nitride respectively, give much structure information. The interface between the top silicon layer and the upper silicon nitride layer can be separated into two sublayers.
Resumo:
The microstructure of silicon on defect layer, a new type of silicon-on-insulator material using proton implantation and two-step annealing to obtain a high resistivity buried layer beneath the silicon surface, has been investigated by transmission electron microscopy. Implantation induced a heavily damaged region containing two types of extended defects involving hydrogen: {001} platelets and {111} platelets. During the first step annealing, gas bubbles and {111} precipitates formed. After the second step annealing, {111} precipitates disappeared, while the bubble microstructure still remained and a buried layer consisting of bubbles and dislocations between the bubbles was left. This study shows that the dislocations pinning the bubbles plays an important role in stabilizing the bubbles and in the formation of the defect insulating layer. (C) 1996 American Institute of Physics.
Resumo:
Under investigation by emission electron microscopy, the shape and size of three-dimensional objects are distorted because of the appearance of a characteristic potential relief and a possible contact potential difference between the particles and the substrate. An estimation of these effects for spherical particles is made. It is shown that the apparent size of particles observed in an emission electron microscope (EEM) could be increased as well as decreased depending on the relation between the work functions of the particle and the substrate. The corresponding formulae are given and several possibilities are shown which permit us to determine from the EEM image the real size of particles and their work function relative to the substrate.
Resumo:
info:eu-repo/semantics/published
Resumo:
The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY--both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia--the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells.
Resumo:
This memoir recalls the instruments in the Electron Microscope Unit and the staff, students and visitors who used them. Accessory equipment is also described because much of it was innovative and built in the laboratory, also, much of the science would not have been possible without it. This publication includes 33 figures, 4 plates and 7 appendices. The appendices record that 54 MBA staff and 196 students and visitors have used the microscopes and that 413 titles have been published (to the end of 2006).