1000 resultados para Ozone determination
Resumo:
The aim of this paper is to determine the strain-rate-dependent mechanical behavior of living and fixed osteocytes and chondrocytes, in vitro. Firstly, Atomic Force Microscopy (AFM) was used to obtain the force-indentation curves of these single cells at four different strain-rates. These results were then employed in inverse finite element analysis (FEA) using Modified Standard neo-Hookean Solid (MSnHS) idealization of these cells to determine their mechanical properties. In addition, a FEA model with a newly developed spring element was employed to accurately simulate AFM evaluation in this study. We report that both cytoskeleton (CSK) and intracellular fluid govern the strain-rate-dependent mechanical property of living cells whereas intracellular fluid plays a predominant role on fixed cells’ behavior. In addition, through the comparisons, it can be concluded that osteocytes are stiffer than chondrocytes at all strain-rates tested indicating that the cells could be the biomarker of their tissue origin. Finally, we report that MSnHS is able to capture the strain-rate-dependent mechanical behavior of osteocyte and chondrocyte for both living and fixed cells. Therefore, we concluded that the MSnHS is a good model for exploration of mechanical deformation responses of single osteocytes and chondrocytes. This study could open a new avenue for analysis of mechanical behavior of osteocytes and chondrocytes as well as other similar types of cells.
Resumo:
Mass-guided fractionation of the MeOH extract from a specimen of the Australian marine sponge Hyrtios sp. resulted in the isolation of two new tryptophan alkaloids, 6-oxofascaplysin (2), and secofascaplysic acid (3), in addition to the known metabolites fascaplysin (1) and reticulatate (4). The structures of all molecules were determined following NMR and MS data analysis. Structural ambiguities in 2 were addressed through comparison of experimental and DFT-generated theoretical NMR spectral values. Compounds 1–4 were evaluated for their cytotoxicity against a prostate cancer cell line (LNCaP) and were shown to display IC50 values ranging from 0.54 to 44.9 μM.
Resumo:
Reactive oxygen species are generated during ischaemia-reperfusion of tissue. Oxidation of thymidine by hydroxyl radicals (HO) leads to the formation of 5,6-dihydroxy-5,6-dihydrothymidine (thymidine glycol). Thymidine glycol is excreted in urine and can be used as biomarker of oxidative DNA damage. Time dependent changes in urinary excretion rates of thymidine glycol were determined in six patients after kidney transplantation and in six healthy controls. A new analytical method was developed involving affinity chromatography and subsequent reverse-phase high-performance liquid chromatography (RP-HPLC) with a post-column chemical reaction detector and endpoint fluorescence detection. The detection limit of this fluorimetric assay was 1.6 ng thymidine glycol per ml urine, which corresponds to about half of the physiological excretion level in healthy control persons. After kidney transplantation the urinary excretion rate of thymidine glycol increased gradually reaching a maximum around 48 h. The excretion rate remained elevated until the end of the observation period of 10 days. Severe proteinuria with an excretion rate of up to 7.2 g of total protein per mmol creatinine was also observed immediately after transplantation and declined within the first 24 h of allograft function (0.35 + 0.26 g/mmol creatinine). The protein excretion pattern, based on separation of urinary proteins on sodium dodecyl sulphate-polyacrylamide gel electrophorosis (SDS-PAGE), as well as excretion of individual biomarker proteins, indicated nonselective glomerular and tubular damage. The increased excretion of thymidine glycol after kidney transplantation may be explained by ischaemia-reperfusion induced oxidative DNA damage of the transplanted kidney.
Resumo:
A new system has been developed to determine enzyme activities of glutathione transferase θ (GSTT1-1) based on radiometric product detection resulting from the enzymic reaction of methyl chloride with 35S-labelled glutathione. In principle, the method is universally applicable for determination of glutathione transferase activities towards a multiplicity of substrates. The method distinguishes between erythrocyte GSTT1-1 activities of human 'non-conjugators', 'low conjugators' and 'high conjugators'. Application to cytosol preparations of livers and kidneys of male and female Fischer 344 and B6C3F1 mice reveals differential GSTT1-1 activities in hepatic and renal tissues. These ought to be considered in species-specific modellings of organ toxicities of chlorinated hydrocarbons.
Resumo:
A new method has been developed for the quantification of 2-hydroxyethylated cysteine resulting as adduct in blood proteins after human exposure to ethylene oxide, by reversed-phase HPLC with fluorometric detection. The specific adduct is analysed in albumin and in globin. After isolation of albumin and globin from blood, acid hydrolysis of the protein and precolumn derivatisation of the digest with 9-fluorenylmethoxycarbonylchloride, the levels of derivatised S-hydroxyethylcysteine are analysed by RP-HPLC and fluorescence detection, with a detection limit of 8 nmol/g protein. Background levels of S-hydroxyethylcysteine were quantified in both albumin and globin, under special consideration of the glutathione transferase GSTT1 and GSTM1 polymorphisms. GSTT1 polymorphism had a marked influence on the physiological background alkylation of cysteine. While S-hydroxyethylcysteine levels in "non-conjugators" were between 15 and 50 nmol/g albumin, "low conjugators" displayed levels between 8 and 21 nmol/g albumin, and "high conjugators" did not show levels above the detection limit. The human GSTM1 polymorphism had no apparent effect on background levels of blood protein 2-hydroxyethylation.
Resumo:
A straightforward procedure for the acid digestion of geological samples with SiO2 concentrations ranging between about 40 to 80%, is described. A powdered sample (200 mesh) of 500 mg was used and fused with 1000 mg spectroflux at about 1000 degreesC in a platinum crucible. The molten was subsequently digested in an aqueous solution of HNO3 at 100 degreesC. Several systematic digestion procedures were followed using various concentrations of HNO3. It was found that a relationship could be established between the dissolution-time and acid concentration. For an acid concentration of 15% an optimum dissolution-time of under 4 min was recorded. To verify that the dissolutions were complete, they were subjected to rigorous quality control tests. The turbidity and viscosity were examined at different intervals and the results were compared with that of deionised water. No significant change in either parameter was observed. The shelf-life of each solution lasted for several months, after which time polymeric silicic acid formed in some solutions, resulting in the presence of a gelatinous solid. The method is cost effective and is clearly well suited for routine applications on a small scale, especially in laboratories in developing countries. ICP-MS was applied to the determination of 13 Rare Earth Elements and Hf in a set of 107 archaeological samples subjected to the above digestion procedure. The distribution of these elements was examined and the possibility of using the REE's for provenance studies is discussed.