916 resultados para Nonlinear mechanics.
Resumo:
The atomic force microscope (AFM) introduced the surface investigation with true atomic resolution. In the frequency modulation technique (FM-AFM) both the amplitude and the frequency of oscillation of the micro-cantilever must be kept constant even in the presence of tip-surface interaction forces. For that reason, the proper design of the Phase-Locked Loop (PLL) used in FM-AFM is vital to system performance. Here, the mathematical model of the FM-AFM control system is derived considering high order PLL In addition a method to design stable third-order Phase-Locked Loops is presented. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Clock signal distribution in telecommunication commercial systems usually adopts a master-slave architecture, with a precise time basis generator as a master and phase-locked loops (PLLs) as slaves. In the majority of the networks, second-order PLLs are adopted due to their simplicity and stability. Nevertheless, in some applications better transient responses are necessary and, consequently, greater order PLLs need to be used, in spite of the possibility of bifurcations and chaotic attractors. Here a master-slave network with third-order PLLs is analyzed and conditions for the stability of the synchronous state are derived, providing design constraints for the node parameters, in order to guarantee stability and reachability of the synchronous state for the whole network. Numerical simulations are carried out in order to confirm the analytical results. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In order to model the synchronization of brain signals, a three-node fully-connected network is presented. The nodes are considered to be voltage control oscillator neurons (VCON) allowing to conjecture about how the whole process depends on synaptic gains, free-running frequencies and delays. The VCON, represented by phase-locked loops (PLL), are fully-connected and, as a consequence, an asymptotically stable synchronous state appears. Here, an expression for the synchronous state frequency is derived and the parameter dependence of its stability is discussed. Numerical simulations are performed providing conditions for the use of the derived formulae. Model differential equations are hard to be analytically treated, but some simplifying assumptions combined with simulations provide an alternative formulation for the long-term behavior of the fully-connected VCON network. Regarding this kind of network as models for brain frequency signal processing, with each PLL representing a neuron (VCON), conditions for their synchronization are proposed, considering the different bands of brain activity signals and relating them to synaptic gains, delays and free-running frequencies. For the delta waves, the synchronous state depends strongly on the delays. However, for alpha, beta and theta waves, the free-running individual frequencies determine the synchronous state. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work considers a semi-implicit system A, that is, a pair (S, y), where S is an explicit system described by a state representation (x)over dot(t) = f(t, x(t), u(t)), where x(t) is an element of R(n) and u(t) is an element of R(m), which is subject to a set of algebraic constraints y(t) = h(t, x(t), u(t)) = 0, where y(t) is an element of R(l). An input candidate is a set of functions v = (v(1),.... v(s)), which may depend on time t, on x, and on u and its derivatives up to a Finite order. The problem of finding a (local) proper state representation (z)over dot = g(t, z, v) with input v for the implicit system Delta is studied in this article. The main result shows necessary and sufficient conditions for the solution of this problem, under mild assumptions on the class of admissible state representations of Delta. These solvability conditions rely on an integrability test that is computed from the explicit system S. The approach of this article is the infinite-dimensional differential geometric setting of Fliess, Levine, Martin, and Rouchon (1999) (`A Lie-Backlund Approach to Equivalence and Flatness of Nonlinear Systems`, IEEE Transactions on Automatic Control, 44(5), (922-937)).
Resumo:
Electromagnetic suspension systems are inherently nonlinear and often face hardware limitation when digitally controlled. The main contributions of this paper are: the design of a nonlinear H(infinity) controller. including dynamic weighting functions, applied to a large gap electromagnetic suspension system and the presentation of a procedure to implement this controller on a fixed-point DSP, through a methodology able to translate a floating-point algorithm into a fixed-point algorithm by using l(infinity) norm minimization due to conversion error. Experimental results are also presented, in which the performance of the nonlinear controller is evaluated specifically in the initial suspension phase. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A network of Kuramoto oscillators with different natural frequencies is optimized for enhanced synchronizability. All node inputs are normalized by the node connectivity and some important properties of the network Structure are determined in this case: (i) optimized networks present a strong anti-correlation between natural frequencies of adjacent nodes: (ii) this anti-correlation should be as high as possible since the average path length between nodes is maintained as small as in random networks: and (iii) high anti-correlation is obtained without any relation between nodes natural frequencies and the degree of connectivity. We also propose a network construction model with which it is shown that high anti-correlation and small average paths may be achieved by randomly rewiring a fraction of the links of a totally anti-correlated network, and that these networks present optimal synchronization properties. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This essay is a trial on giving some mathematical ideas about the concept of biological complexity, trying to explore four different attributes considered to be essential to characterize a complex system in a biological context: decomposition, heterogeneous assembly, self-organization, and adequacy. It is a theoretical and speculative approach, opening some possibilities to further numerical and experimental work, illustrated by references to several researches that applied the concepts presented here. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Transmission and switching in digital telecommunication networks require distribution of precise time signals among the nodes. Commercial systems usually adopt a master-slave (MS) clock distribution strategy building slave nodes with phase-locked loop (PLL) circuits. PLLs are responsible for synchronizing their local oscillations with signals from master nodes, providing reliable clocks in all nodes. The dynamics of a PLL is described by an ordinary nonlinear differential equation, with order one plus the order of its internal linear low-pass filter. Second-order loops are commonly used because their synchronous state is asymptotically stable and the lock-in range and design parameters are expressed by a linear equivalent system [Gardner FM. Phaselock techniques. New York: John Wiley & Sons: 1979]. In spite of being simple and robust, second-order PLLs frequently present double-frequency terms in PD output and it is very difficult to adapt a first-order filter in order to cut off these components [Piqueira JRC, Monteiro LHA. Considering second-harmonic terms in the operation of the phase detector for second order phase-locked loop. IEEE Trans Circuits Syst [2003;50(6):805-9; Piqueira JRC, Monteiro LHA. All-pole phase-locked loops: calculating lock-in range by using Evan`s root-locus. Int J Control 2006;79(7):822-9]. Consequently, higher-order filters are used, resulting in nonlinear loops with order greater than 2. Such systems, due to high order and nonlinear terms, depending on parameters combinations, can present some undesirable behaviors, resulting from bifurcations, as error oscillation and chaos, decreasing synchronization ranges. In this work, we consider a second-order Sallen-Key loop filter [van Valkenburg ME. Analog filter design. New York: Holt, Rinehart & Winston; 1982] implying a third order PLL The resulting lock-in range of the third-order PLL is determined by two bifurcation conditions: a saddle-node and a Hopf. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a comparative study of computational fluid dynamics (CFD) and analytical and semiempirical (ASE) methods applied to the prediction of the normal force and moment coefficients of an autonomous underwater vehicle (AUV). Both methods are applied to the. bare hull of the vehicle and to the body-hydroplane combination. The results are validated through experiments in a towing tank. It is shown that the CFD approach allows for a good prediction of the coefficients over the range of angles of attack considered. In contrast with the traditional ASE formulations used in naval and aircraft fields, an improved methodology is introduced that takes advantage of the qualitative information obtained from CFD flow visualizations.
Resumo:
This work considers a nonlinear time-varying system described by a state representation, with input u and state x. A given set of functions v, which is not necessarily the original input u of the system, is the (new) input candidate. The main result provides necessary and sufficient conditions for the existence of a local classical state space representation with input v. These conditions rely on integrability tests that are based on a derived flag. As a byproduct, one obtains a sufficient condition of differential flatness of nonlinear systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The double-frequency jitter is one of the main problems in clock distribution networks. In previous works, sonic analytical and numerical aspects of this phenomenon were studied and results were obtained for one-way master-slave (OWMS) architectures. Here, an experimental apparatus is implemented, allowing to measure the power of the double-frequency signal and to confirm the theoretical conjectures. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The paper presents a number of numerical simulations of the transverse vibrations of two (or one) imbalanced rotors forced by an electric motor with limited power supply, during the passage through of the two resonance zones (increasing and decreasing input voltages). The predominant presence of the Sommerfeld effect. when the rotational velocity of the motor is captured, in the second resonance frequency is demonstrated. We have shown that the hysteretic jump phenomenon exists in a rotor system with two (or one) disks, and with this, we have shown that a torque is influenced by the dynamical behavior of die rotor [DOI: 10.1115/1.3007979]
Resumo:
We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never completely removes the instability. The low-frequency part of the gain spectrum is accurately predicted by an averaged theory and disappears for certain gratings. The high-frequency part is related to the inherent gain of the homogeneous non-phase-matched material and is a consistent spectral feature.
Resumo:
We show that quantum mechanics predicts a contradiction with local hidden variable theories for photon number measurements which have limited resolving power, to the point of imposing an uncertainty in the photon number result which is macroscopic in absolute terms. We show how this can be interpreted as a failure of a new premise, macroscopic local realism.
Resumo:
We investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent. In the first part of this work it is assumed that the coeffcients Q and h are at least continuous. Moreover Q is positive on overline Omega and lambda > 0 is a parameter. We examine the common effect of the mean curvature and the shape of the graphs of the coeffcients Q and h on the existence of low energy solutions. In the second part of this work we consider the same problem with Q replaced by - Q. In this case the problem can be supercritical and the existence results depend on integrability conditions on Q and h.