941 resultados para Nonlinear functional analysis
Production of recombinant G protein-coupled receptor in yeast for structural and functional analysis
Resumo:
Primary hyperparathyroidism (PHPT) is a common endocrine neoplastic disorder caused by a failure of calcium sensing secondary to tumour development in one or more of the parathyroid glands. Parathyroid adenomas are comprised of distinct cellular subpopulations of variable clonal status that exhibit differing degrees of calcium responsiveness. To gain a clearer understanding of the relationship among cellular identity, tumour composition and clinical biochemistry in PHPT, we developed a novel single cell platform for quantitative evaluation of calcium sensing behaviour in freshly resected human parathyroid tumour cells. Live-cell intracellular calcium flux was visualized through Fluo-4-AM epifluorescence, followed by in situ immunofluorescence detection of the calcium sensing receptor (CASR), a central component in the extracellular calcium signalling pathway. The reactivity of individual parathyroid tumour cells to extracellular calcium stimulus was highly variable, with discrete kinetic response patterns observed both between and among parathyroid tumour samples. CASR abundance was not an obligate determinant of calcium responsiveness. Calcium EC50 values from a series of parathyroid adenomas revealed that the tumours segregated into two distinct categories. One group manifested a mean EC50 of 2.40 mM (95% CI: 2.37-2.41), closely aligned to the established normal range. The second group was less responsive to calcium stimulus, with a mean EC50 of 3.61 mM (95% CI: 3.45-3.95). This binary distribution indicates the existence of a previously unappreciated biochemical sub-classification of PHPT tumours, possibly reflecting distinct etiological mechanisms. Recognition of quantitative differences in calcium sensing could have important implications for the clinical management of PHPT.
Resumo:
Inflammatory breast cancer (IBC) is an extremely rare but highly aggressive form of breast cancer characterized by the rapid development of therapeutic resistance leading to particularly poor survival. Our previous work focused on the elucidation of factors that mediate therapeutic resistance in IBC and identified increased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein (XIAP), to correlate with the development of resistance to chemotherapeutics. Although XIAP is classically thought of as an inhibitor of caspase activation, multiple studies have revealed that XIAP can also function as a signaling intermediate in numerous pathways. Based on preliminary evidence revealing high expression of XIAP in pre-treatment IBC cells rather than only subsequent to the development of resistance, we hypothesized that XIAP could play an important signaling role in IBC pathobiology outside of its heavily published apoptotic inhibition function. Further, based on our discovery of inhibition of chemotherapeutic efficacy, we postulated that XIAP overexpression might also play a role in resistance to other forms of therapy, such as immunotherapy. Finally, we posited that targeting of specific redox adaptive mechanisms, which are observed to be a significant barrier to successful treatment of IBC, could overcome therapeutic resistance and enhance the efficacy of chemo-, radio-, and immuno- therapies. To address these hypotheses our objectives were: 1. to determine a role for XIAP in IBC pathobiology and to elucidate the upstream regulators and downstream effectors of XIAP; 2. to evaluate and describe a role for XIAP in the inhibition of immunotherapy; and 3. to develop and characterize novel redox modulatory strategies that target identified mechanisms to prevent or reverse therapeutic resistance.
Using various genomic and proteomic approaches, combined with analysis of cellular viability, proliferation, and growth parameters both in vitro and in vivo, we demonstrate that XIAP plays a central role in both IBC pathobiology in a manner mostly independent of its role as a caspase-binding protein. Modulation of XIAP expression in cells derived from patients prior to any therapeutic intervention significantly altered key aspects IBC biology including, but not limited to: IBC-specific gene signatures; the tumorigenic capacity of tumor cells; and the metastatic phenotype of IBC, all of which are revealed to functionally hinge on XIAP-mediated NFκB activation, a robust molecular determinant of IBC. Identification of the mechanism of XIAP-mediated NFκB activation led to the characterization of novel peptide-based antagonist which was further used to identify that increased NFκB activation was responsible for redox adaptation previously observed in therapy-resistant IBC cells. Lastly, we describe the targeting of this XIAP-NFκB-ROS axis using a novel redox modulatory strategy both in vitro and in vivo. Together, the data presented here characterize a novel and crucial role for XIAP both in therapeutic resistance and the pathobiology of IBC; these results confirm our previous work in acquired therapeutic resistance and establish the feasibility of targeting XIAP-NFκB and the redox adaptive phenotype of IBC as a means to enhance survival of patients.
Resumo:
The carotid body (CB) is a major arterial chemoreceptor containing glomus cells that are activated by changes in arterial blood contents including oxygen. Despite significant advancement in the characterization of their physiological properties, our understanding on the underlying molecular machinery and signaling pathway in CB glomus cells is still limited.
To overcome these limitations, in chapter 1, I demonstrated the first transcriptome profile of CB glomus cells using single cell sequencing technology, which allowed us to uncover a set of abundantly expressed genes, including novel glomus cell-specific transcripts. These results revealed involvement of G protein-coupled receptor (GPCR) signaling pathway, various types of ion channels, as well as atypical mitochondrial subunits in CB function. I also identified ligands for the mostly highly expressed GPCR (Olfr78) in CB glomus cells and examined this receptor’s role in CB mediated hypoxic ventilatory response.
Current knowledge of CB suggest glomus cells rely on unusual mitochondria for their sensitivity to hypoxia. I previously identified the atypical mitochondrial subunit Ndufa4l2 as a highly over-represented gene in CB glomus cells. In chapter 2, to investigate the functional significance of Ndufa4l2 in CB function, I phenotyped both Ndufa4l2 knockout mice and mice with conditional Ndufa4l2 deletion in CB glomus cells. I found that Ndufa4l2 is essential to the establishment of regular breathing after birth. Ablating Ndufa4l2 in postnatal CB glomus cells resulted in defective CB sensitivity to hypoxia as well as CB mediated hypoxic ventilatory response. Together, our data showed that Ndufa4l2 is critical to respiratory control and the oxygen sensitivity of CB glomus cells.
Resumo:
PURPOSE: This study sought to establish whether functional analysis of the ATM-p53-p21 pathway adds to the information provided by currently available prognostic factors in patients with chronic lymphocytic leukemia (CLL) requiring frontline chemotherapy. EXPERIMENTAL DESIGN: Cryopreserved blood mononuclear cells from 278 patients entering the LRF CLL4 trial comparing chlorambucil, fludarabine, and fludarabine plus cyclophosphamide were analyzed for ATM-p53-p21 pathway defects using an ex vivo functional assay that uses ionizing radiation to activate ATM and flow cytometry to measure upregulation of p53 and p21 proteins. Clinical endpoints were compared between groups of patients defined by their pathway status. RESULTS: ATM-p53-p21 pathway defects of four different types (A, B, C, and D) were identified in 194 of 278 (70%) samples. The type A defect (high constitutive p53 expression combined with impaired p21 upregulation) and the type C defect (impaired p21 upregulation despite an intact p53 response) were each associated with short progression-free survival. The type A defect was associated with chemoresistance, whereas the type C defect was associated with early relapse. As expected, the type A defect was strongly associated with TP53 deletion/mutation. In contrast, the type C defect was not associated with any of the other prognostic factors examined, including TP53/ATM deletion, TP53 mutation, and IGHV mutational status. Detection of the type C defect added to the prognostic information provided by TP53/ATM deletion, TP53 mutation, and IGHV status. CONCLUSION: Our findings implicate blockade of the ATM-p53-p21 pathway at the level of p21 as a hitherto unrecognized determinant of early disease recurrence following successful cytoreduction.
Resumo:
The present work consists of a detailed numerical analysis of a 4-way joint made of a precast column and two partially precast beams. The structure has been previously built and experimentally analyzed through a series of cyclic loads at the Laboratory of Tests on Structures (Laboratorio di Prove su Strutture, La. P. S.) of the University of Bologna. The aim of this work is to design a 3D model of the joint and then apply the techniques of nonlinear finite element analysis (FEA) to computationally reproduce the behavior of the structure under cyclic loads. Once the model has been calibrated to correctly emulate the joint, it is possible to obtain new insights useful to understand and explain the physical phenomena observed in the laboratory and to describe the properties of the structure, such as the cracking patterns, the force-displacement and the moment-curvature relations, as well as the deformations and displacements of the various elements composing the joint.
Resumo:
G6PC3 is a widely expressed isoform of glucose-6-phosphatase, found in many foetal and adult tissues. Mutations in this gene cause developmental abnormalities and severe neutropenia due to abolition of glucose recycling between the cytoplasm and endoplasmic reticulum. Low G6PC3 expression as a result of promoter polymorphisms or dysregulation could produce similar outcomes. Here we investigated the regulation of human G6PC3 promoter activity. HeLa and H4IIE cells were transiently transfected with G6PC3 promoter coupled to the firefly luciferase gene, and promoter activity was measured by dual luciferase assay. Activity was highest in a 453 bp segment of the G6PC3 promoter, from − 455 to − 3 relative to the transcriptional start site. This promoter was unresponsive to glucostatic hormones. Its activity increased significantly between 1 and 5.5 mM glucose, and was not elevated further by glucose concentrations up to 25 mM. Pyruvate increased its activity, but β-hydroxybutyrate and sodium acetate did not. Promoter activity was reduced by inhibitors of hexokinase, glyceraldehyde phosphate dehydrogenase and the oxidative branch of the pentose phosphate pathway, but not by a transketolase inhibitor. Deletion of two adjacent Enhancer-boxes (− 274 to − 279 and − 299 to − 304) reduced promoter activity and abolished the glucose effect, suggesting they could function as a glucose response element. Deletion of an additional downstream 140 bp (− 140 to − 306) restored activity, but not the glucose response, suggesting the presence of repressor elements in this region. 5-Aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR) reduced promoter activity, showing dependence on AMP-kinase. Regulation of the G6PC3 promoter is thus radically different to that of the hepatic isoform, G6PC. It is sensitive to carbohydrate, but not to fatty acid metabolites, and at much lower physiological concentrations. Based on these findings, we speculate that reduced G6PC3 expression could occur during hypoglycemic episodes in vivo, which are common in utero and in the postnatal period. If such episodes lower G6PC3 expression they could place the foetus or infant at risk of impaired immune function and development, and this possibility requires further examination both in vitro and in vivo.
Resumo:
During early vertebrate development, the correct establishment of the body axes is critical. The anterior pole of the mouse embryo is established when Distal Visceral Endoderm (DVE) cells migrate to form the Anterior Visceral Endoderm (AVE). Symmetrical expression of Lefty1, Cer1 and Dkk1 determines the direction of DVE migration and the future anterior side. In addition to the establishment of the Anterior-Posterior axis, the AVE has also been implicated in anterior neural specification. To better understand the role of the AVE in these processes, we have performed a differential screening using Affymetrix GeneChip technology with AVE cells isolated from cer1P-EGFP transgenic mouse embryos. We found 175 genes which were upregulated in the AVE and 36 genes in the Proximal-posterior sample. Using DAVID software, we characterized the AVE cell population regarding cellular component, molecular function and biological processes. Among the genes that were found to be upregulated in the AVE, several novel genes were identified. Four of these transcripts displaying high-fold change in the AVE were further characterized by in situ hybridization in early stages of development in order to validate the screening. From those four selected genes, one, denominated Adtk1, was chosen to be functionally characterized by targeted inactivation in ES cells. Adtk1 encodes for a serine/threonine kinase. Adtk1 null mutants are smaller and present short limbs due to decreased mineralization, suggesting a potential role in chondrogenesis during limb development. Taken together, these data point to the importance of reporting novel genes present in the AVE.
Resumo:
A organização, a gestão e o planejamento de uma unidade de informação compreende várias etapas e envolve os processos e técnicas do campo de pesquisa do profissional do Bibliotecário. Neste estudo pretendemos construir uma proposta de reestruturação da Biblioteca do Centro de Estudos Teológicos das Assembléias de Deus na Paraíba - CETAD/PB. E especificamente: definir um sistema de organização para o acervo que conduza à autonomia do usuário no processo de busca e recuperação da informação; indicar um software de gerenciamento de bibliotecas que supra as necessidades da unidade de informação; conhecer o público alvo, a partir de instrumento de estudo de usuário, a fim de adequar as ferramentas tecnológicas que serão utilizadas; organizar um guia para auxiliar o processo de reestruturação e propor medidas para a regulamentação do funcionamento da biblioteca do CETAD/PB. A metodologia utiliza a abordagem de pesquisa qualitativa, com características do tipo descritiva e exploratória. Adota a pesquisa de campo, para conhecer e detalhar o universo de pesquisa que foi o Centro de Estudos Teológicos das Assembléias de Deus na Paraíba CETAD/PB, bem como os sujeitos da pesquisa, ou seja, os alunos da instituição. O instrumento de coleta dos dados utilizado foi o questionário. Para representar os dados recorre às técnicas e aos recursos estatísticos da pesquisa quantitativa. Com as análises dos dados desvenda o perfil dos seus usuários, constata a insatisfação dos mesmos com relação a organização do acervo, assim como quais ferramentas tecnológicas se adéquam a esse perfil para o aprimoramento nas etapas de tratamento e disseminação dos suportes informacionais, como também no serviços de atendimento ao usuário. Destaca o profissional da informação como gestor nas Unidades de Informação, com atuação que vai além dos procedimentos e técnicas tradicionais da profissão. Palavras-chave: Biblioteca Especializada. Biblioteca – Teologia. Organização de Bibliotecas.
Resumo:
Dissertação de Mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2014
Resumo:
The Endosomal Sorting Complex Required for Transport (ESCRT)-complex is composed of four complexes, ESCRT-0-III. They sequentially act on a late endosome to sort mono-ubiquitinated transmembrane proteins into the intralumenal vesicle, forming of a multivesicular body(MVB) that is delivered to vacuole for degradation. In Arabidopsis thaliana, the loss of an ESCRT-I component, elch displays a cytokinesis defect; while a dominant negative expression of an ESCRT-III component results in cell death due to vacuolar loss. In this work, the function of a plant-specific ELCH-interactor, CELL DEATH RELATED FYVE/SYLF DOMAIN CONTAINING 1 (CFS1) and its influences on the ESCRT-complex function are investigated. CFS1 is a phosphatidylinositol-3-phosphate- and actin-binding protein. The cfs1 mutants mimic lesions in the first eldest leaf that propagate to the next eldest one. Genetic analyses have demonstrated that cell death in cfs1 does not require a functional ESCRT-I component; nevertheless, the loss of CFS1 alleviates elchcytokinesis defect, suggesting its influence on the ESCRT-I function. Further analyses reveal that cfs1 accumulates autophagosomes throughout its lifespan due to a decrease in autophagosome degradation, suggesting that as the plant ages, the cumulated autophagosomes falsely trigger effectors-triggered immunity that executes cell death in cfs1. As the ESCRT-complex has been demonstrated to be involved in the delivery of autophagosomes to vacuole and CFS1 homolog, CFS2 reportedly interacts with ATG8, it can be postulated from the results of this work that CFS1 alone or together with CFS2 function in sequestering mature autophagosomes onto MVBs. At the MVBs, the ESCRT-complex then mediates the fusion of autophagosome and MVB for subsequent delivery to vacuole.
Resumo:
This paper outlines three information organization frameworks: library classification, social tagging, and boundary infrastructures. It then outlines functionality of these frameworks. The paper takes a neo-pragmatic approach. The paper finds that these frameworks are complementary, and by understanding the differences and similarities that obtain between them, researchers and developers can begin to craft a vocabulary of evaluation.
Resumo:
Este trabajo aporta evidencia empírica acerca de los factores determinantes de las diferencias en la probabilidad de acceder a un contrato indefinido entre las distintas regiones españolas. Para ello, y de forma novedosa en este contexto, se aplica una extensión de la metodología tradicional de Oaxaca-Blinder al caso de modelos no lineales. Los resultados apuntan a la coexistencia de distintas “culturas de la temporalidad” en España, al existir discrepancias regionales significativas en el empleo del trabajo temporal como medida de flexibilización laboral. Estas diferencias tienen incluso más capacidad explicativa que las discrepancias en las características de la mano de obra y de las empresas instaladas en cada región. Estos resultados cuestionan las medidas adoptadas para combatir el problema de la precariedad laboral en España, al no haber considerado las especificidades regionales.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)