969 resultados para Nonlinear PDE, option pricing, compact finite difference discretization, convergence, incomplete markets, inverse problem, SQP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determining effective hydraulic, thermal, mechanical and electrical properties of porous materials by means of classical physical experiments is often time-consuming and expensive. Thus, accurate numerical calculations of material properties are of increasing interest in geophysical, manufacturing, bio-mechanical and environmental applications, among other fields. Characteristic material properties (e.g. intrinsic permeability, thermal conductivity and elastic moduli) depend on morphological details on the porescale such as shape and size of pores and pore throats or cracks. To obtain reliable predictions of these properties it is necessary to perform numerical analyses of sufficiently large unit cells. Such representative volume elements require optimized numerical simulation techniques. Current state-of-the-art simulation tools to calculate effective permeabilities of porous materials are based on various methods, e.g. lattice Boltzmann, finite volumes or explicit jump Stokes methods. All approaches still have limitations in the maximum size of the simulation domain. In response to these deficits of the well-established methods we propose an efficient and reliable numerical method which allows to calculate intrinsic permeabilities directly from voxel-based data obtained from 3D imaging techniques like X-ray microtomography. We present a modelling framework based on a parallel finite differences solver, allowing the calculation of large domains with relative low computing requirements (i.e. desktop computers). The presented method is validated in a diverse selection of materials, obtaining accurate results for a large range of porosities, wider than the ranges previously reported. Ongoing work includes the estimation of other effective properties of porous media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study is made on the flow and heat transfer of a viscous fluid confined between two parallel disks. The disks are allowed to rotate with different time dependent angular velocities, and the upper disk is made to approach the lower one with a constant speed. Numerical solutions of the governing parabolic partial differential equations are obtained through a fourth-order accurate compact finite difference scheme. The normal forces and torques that the fluid exerts on the rotating surfaces are obtained at different nondimensional times for different values of the rate of squeezing and disk angular velocities. The temperature distribution and heat transfer are also investigated in the present analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compressible Navier-Stokes equations discretized with a fourth order accurate compact finite difference scheme with group velocity control are used to simulate the Richtmyer-Meshkov (R-M) instability problem produced by cylindrical shock-cylindrical material interface with shock Mach number Ms = 1.2 and density ratio 1:20 (interior density/outer density). Effect of shock refraction, reflection, interaction of the reflected shock with the material interface, and effect of initial perturbation modes on R-M instability are investigated numerically. It is noted that the shock refraction is a main physical mechanism of the initial phase changing of the material surface. The multiple interactions of the reflected shock from the origin with the interface and the R-M instability near the material interface are the reason for formation of the spike-bubble structures. Different viscosities lead to different spike-bubble structure characteristics. The vortex pairing phenomenon is found in the initial double mode simulation. The mode interaction is the main factor of small structures production near the interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waves with periods shorter than the inertial period exist in the atmosphere (as inertia-gravity waves) and in the oceans (as Poincaré and internal gravity waves). Such waves owe their origin to various mechanisms, but of particular interest are those arising either from local secondary instabilities or spontaneous emission due to loss of balance. These phenomena have been studied in the laboratory, both in the mechanically-forced and the thermally-forced rotating annulus. Their generation mechanisms, especially in the latter system, have not yet been fully understood, however. Here we examine short period waves in a numerical model of the rotating thermal annulus, and show how the results are consistent with those from earlier laboratory experiments. We then show how these waves are consistent with being inertia-gravity waves generated by a localised instability within the thermal boundary layer, the location of which is determined by regions of strong shear and downwelling at certain points within a large-scale baroclinic wave flow. The resulting instability launches small-scale inertia-gravity waves into the geostrophic interior of the flow. Their behaviour is captured in fully nonlinear numerical simulations in a finite-difference, 3D Boussinesq Navier-Stokes model. Such a mechanism has many similarities with those responsible for launching small- and meso-scale inertia-gravity waves in the atmosphere from fronts and local convection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to develop an efficient numerical algorithm for the self-consistent solution of Schrodinger and Poisson equations in one-dimensional systems. The goal is to compute the charge-control and capacitance-voltage characteristics of quantum wire transistors. Design/methodology/approach - The paper presents a numerical formulation employing a non-uniform finite difference discretization scheme, in which the wavefunctions and electronic energy levels are obtained by solving the Schrodinger equation through the split-operator method while a relaxation method in the FTCS scheme ("Forward Time Centered Space") is used to solve the two-dimensional Poisson equation. Findings - The numerical model is validated by taking previously published results as a benchmark and then applying them to yield the charge-control characteristics and the capacitance-voltage relationship for a split-gate quantum wire device. Originality/value - The paper helps to fulfill the need for C-V models of quantum wire device. To do so, the authors implemented a straightforward calculation method for the two-dimensional electronic carrier density n(x,y). The formulation reduces the computational procedure to a much simpler problem, similar to the one-dimensional quantization case, significantly diminishing running time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes a methodology to simulate free surface incompressible multiphase flows. This novel methodology allows the simulation of multiphase flows with an arbitrary number of phases, each of them having different densities and viscosities. Surface and interfacial tension effects are also included. The numerical technique is based on the GENSMAC front-tracking method. The velocity field is computed using a finite-difference discretization of a modification of the NavierStokes equations. These equations together with the continuity equation are solved for the two-dimensional multiphase flows, with different densities and viscosities in the different phases. The governing equations are solved on a regular Eulerian grid, and a Lagrangian mesh is employed to track free surfaces and interfaces. The method is validated by comparing numerical with analytic results for a number of simple problems; it was also employed to simulate complex problems for which no analytic solutions are available. The method presented in this paper has been shown to be robust and computationally efficient. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit werden Quantum-Hydrodynamische (QHD) Modelle betrachtet, die ihren Einsatz besonders in der Modellierung von Halbleiterbauteilen finden. Das QHD Modell besteht aus den Erhaltungsgleichungen für die Teilchendichte, das Momentum und die Energiedichte, inklusive der Quanten-Korrekturen durch das Bohmsche Potential. Zu Beginn wird eine Übersicht über die bekannten Ergebnisse der QHD Modelle unter Vernachlässigung von Kollisionseffekten gegeben, die aus ein­em Schrödinger-System für den gemischten-Zustand oder aus der Wigner-Glei­chung hergeleitet werden können. Nach der Reformulierung der eindimensionalen QHD Gleichungen mit linearem Potential als stationäre Schrö­din­ger-Gleichung werden die semianalytischen Fassungen der QHD Gleichungen für die Gleichspannungs-Kurve betrachtet. Weiterhin werden die viskosen Stabilisierungen des QHD Modells be­rück­sich­tigt, sowie die von Gardner vorgeschlagene numerische Viskosität für das {sf upwind} Finite-Differenzen Schema berechnet. Im Weiteren wird das viskose QHD Modell aus der Wigner-Glei­chung mit Fokker-Planck Kollisions-Ope­ra­tor hergeleitet. Dieses Modell enthält die physikalische Viskosität, die durch den Kollision-Operator eingeführt wird. Die Existenz der Lösungen (mit strikt positiver Teilchendichte) für das isotherme, stationäre, eindimensionale, viskose Modell für allgemeine Daten und nichthomogene Randbedingungen wird gezeigt. Die dafür notwendigen Abschätzungen hängen von der Viskosität ab und erlauben daher den Grenzübergang zum nicht-viskosen Fall nicht. Numerische Simulationen der Resonanz-Tunneldiode modelliert mit dem nichtisothermen, stationären, eindimensionalen, viskosen QHD Modell zeigen den Einfluss der Viskosität auf die Lösung. Unter Verwendung des von Degond und Ringhofer entwickelten Quanten-Entropie-Minimierungs-Verfahren werden die allgemeinen QHD-Gleichungen aus der Wigner-Boltzmann-Gleichung mit dem BGK-Kollisions-Operator hergeleitet. Die Herleitung basiert auf der vorsichtige Entwicklung des Quanten-Max­well­ians in Potenzen der skalierten Plankschen Konstante. Das so erhaltene Modell enthält auch vertex-Terme und dispersive Terme für die Ge­schwin­dig­keit. Dadurch bleibt die Gleichspannungs-Kurve für die Re­so­nanz-Tunnel­diode unter Verwendung des allgemeinen QHD Modells in einer Dimension numerisch erhalten. Die Ergebnisse zeigen, dass der dispersive Ge­schwin­dig­keits-Term die Lösung des Systems stabilisiert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of deformation in soils is of paramount importance in geotechnical engineering. For a long time the complex behaviour of natural deposits defied the ingenuity of engineers. The time has come that, with the aid of computers, numerical methods will allow the solution of every problem if the material law can be specified with a certain accuracy. Boundary Techniques (B.E.) have recently exploded in a splendid flowering of methods and applications that compare advantegeously with other well-established procedures like the finite element method (F.E.). Its application to soil mechanics problems (Brebbia 1981) has started and will grow in the future. This paper tries to present a simple formulation to a classical problem. In fact, there is already a large amount of application of B.E. to diffusion problems (Rizzo et al, Shaw, Chang et al, Combescure et al, Wrobel et al, Roures et al, Onishi et al) and very recently the first specific application to consolidation problems has been published by Bnishi et al. Here we develop an alternative formulation to that presented in the last reference. Fundamentally the idea is to introduce a finite difference discretization in the time domain in order to use the fundamental solution of a Helmholtz type equation governing the neutral pressure distribution. Although this procedure seems to have been unappreciated in the previous technical literature it is nevertheless effective and straightforward to implement. Indeed for the special problem in study it is perfectly suited, because a step by step interaction between the elastic and flow problems is needed. It allows also the introduction of non-linear elastic properties and time dependent conditions very easily as will be shown and compares well with performances of other approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This book deals with equations of mathematical physics as the different modifications of the KdV equation, the Camassa-Holm type equations, several modifications of Burger's equation, the Hunter-Saxton equation, conservation laws equations and others. The equations originate from physics but are proposed here for their investigation via purely mathematical methods in the frames of university courses. More precisely, we propose classification theorems for the traveling wave solutions for a sufficiently large class of third order nonlinear PDE when the corresponding profiles develop different kind of singularities (cusps, peaks), existence and uniqueness results, etc. The orbital stability of the periodic solutions of traveling type for mKdV equations are also studied. Of great interest too is the interaction of peakon type solutions of the Camassa-Holm equation and the solvability of the classical and generalized Cauchy problem for the Hunter-Saxton equation. The Riemann problem for special systems of conservation laws and the corresponding -shocks are also considered. As it concerns numerical methods we apply the CNN approach. The book is addressed to a broader audience including graduate students, Ph.D. students, mathematicians, physicist, engineers and specialists in the domain of PDE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A residual based a posteriori error estimator is derived for a quadratic finite element method (FEM) for the elliptic obstacle problem. The error estimator involves various residuals consisting of the data of the problem, discrete solution and a Lagrange multiplier related to the obstacle constraint. The choice of the discrete Lagrange multiplier yields an error estimator that is comparable with the error estimator in the case of linear FEM. Further, an a priori error estimate is derived to show that the discrete Lagrange multiplier converges at the same rate as that of the discrete solution of the obstacle problem. The numerical experiments of adaptive FEM show optimal order convergence. This demonstrates that the quadratic FEM for obstacle problem exhibits optimal performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we characterize the asymmetries of the smile through multiple leverage effects in a stochastic dynamic asset pricing framework. The dependence between price movements and future volatility is introduced through a set of latent state variables. These latent variables can capture not only the volatility risk and the interest rate risk which potentially affect option prices, but also any kind of correlation risk and jump risk. The standard financial leverage effect is produced by a cross-correlation effect between the state variables which enter into the stochastic volatility process of the stock price and the stock price process itself. However, we provide a more general framework where asymmetric implied volatility curves result from any source of instantaneous correlation between the state variables and either the return on the stock or the stochastic discount factor. In order to draw the shapes of the implied volatility curves generated by a model with latent variables, we specify an equilibrium-based stochastic discount factor with time non-separable preferences. When we calibrate this model to empirically reasonable values of the parameters, we are able to reproduce the various types of implied volatility curves inferred from option market data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The consumption capital asset pricing model is the standard economic model used to capture stock market behavior. However, empirical tests have pointed out to its inability to account quantitatively for the high average rate of return and volatility of stocks over time for plausible parameter values. Recent research has suggested that the consumption of stockholders is more strongly correlated with the performance of the stock market than the consumption of non-stockholders. We model two types of agents, non-stockholders with standard preferences and stock holders with preferences that incorporate elements of the prospect theory developed by Kahneman and Tversky (1979). In addition to consumption, stockholders consider fluctuations in their financial wealth explicitly when making decisions. Data from the Panel Study of Income Dynamics are used to calibrate the labor income processes of the two types of agents. Each agent faces idiosyncratic shocks to his labor income as well as aggregate shocks to the per-share dividend but markets are incomplete and agents cannot hedge consumption risks completely. In addition, consumers face both borrowing and short-sale constraints. Our results show that in equilibrium, agents hold different portfolios. Our model is able to generate a time-varying risk premium of about 5.5% while maintaining a low risk free rate, thus suggesting a plausible explanation for the equity premium puzzle reported by Mehra and Prescott (1985).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors apply economic theory to an analysis of industry pricing. Data from a cross-section of San Francisco hotels is used to estimate the implicit prices of common hotel amenities, and a procedure for using these prices to estimate consumer demands for the attributes is outlined. The authors then suggest implications for hotel decision makers. While the results presented here should not be generalized to other markets, the methodology is easily adapted to other geographic areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new finite difference method for the discretization of the incompressible Navier-Stokes equations is presented. The scheme is constructed on a staggered-mesh grid system. The convection terms are discretized with a fifth-order-accurate upwind compact difference approximation, the viscous terms are discretized with a sixth-order symmetrical compact difference approximation, the continuity equation and the pressure gradient in the momentum equations are discretized with a fourth-order difference approximation on a cell-centered mesh. Time advancement uses a three-stage Runge-Kutta method. The Poisson equation for computing the pressure is solved with preconditioning. Accuracy analysis shows that the new method has high resolving efficiency. Validation of the method by computation of Taylor's vortex array is presented.