956 resultados para Multivariate GARCH


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study developed a gluten-free granola and evaluated it during storage with the application of multivariate and regression analysis of the sensory and instrumental parameters. The physicochemical, sensory, and nutritional characteristics of a product containing quinoa, amaranth and linseed were evaluated. The crude protein and lipid contents ranged from 97.49 and 122.72 g kg-1 of food, respectively. The polyunsaturated/saturated, and n-6:n-3 fatty acid ratios ranged from 2.82 and 2.59:1, respectively. Granola had the best alpha-linolenic acid content, nutritional indices in the lipid fraction, and mineral content. There were good hygienic and sanitary conditions during storage; probably due to the low water activity of the formulation, which contributed to inhibit microbial growth. The sensory attributes ranged from 'like very much' to 'like slightly', and the regression models were highly fitted and correlated during the storage period. A reduction in the sensory attribute levels and in the product physical stabilisation was verified by principal component analysis. The use of the affective test acceptance and instrumental analysis combined with statistical methods allowed us to obtain promising results about the characteristics of gluten-free granola.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The present work aimed at studying the effect of different drying methods applied to tilapia byproducts (heads, viscera and carcasses) fed with flaxseed, verifying the contents of omega-3 fatty acids. Two diets were given to the tilapia: a control and a flaxseed formulation, over the course of 60 days. After this period, they were slaughtered and their byproducts (heads, viscera and carcasses) were collected. These fish parts were analyzed in natura, lyophilized and oven dried. Byproducts from tilapia fed with flaxseed presented docosapentaenoic, eicopentaenoic and docosahexanoic fatty acids as a result of the enzymatic metabolism of the fish. The byproducts from the oven drying process had lower levels of polyunsaturated fatty acids. In the multivariate analysis, the byproducts from fish fed with flaxseed had a greater composition of fatty acids. The addition of flaxseed in fish diets, as well as the utilization of their byproducts, may become a good business strategy. Additionally, the byproducts may be dried to facilitate transport and storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explores the pricing of liquidity risk and its effect on stock returns in the Finnish stock market. In addition to that, it investigates whether there is a trend in liquidity risk. Finally, it analyzes whether the two chosen liquidity measures provide different results. The data consists of all the common shares listed in the Finnish stock market during the period of 1/1997–7/2015. To examine whether liquidity risk affects stock returns in the Finnish stock market, this study utilizes a conditional version of liquidity-adjusted capital asset pricing model (LCAPM) by Acharya and Pedersen (2005). Two recently proposed illiquidity measures – PQS and AdjILLIQ – are used in the empirical estimation to see whether there are differences in the results between the measures. The time-varying conditional liquidity risks are estimated by using a multivariate DCC-GARCH model, while the pricing of the liquidity risk is conducted by applying fixed effect panel regression. The results imply that investors in the Finnish stock market are willing to pay a premium to hedge from wealth shocks and having liquid assets during the declined market liquidity. However, investors are not willing to pay a premium for stocks with higher returns during illiquid markets. The total annualized illiquidity premiums found in the Finnish stock market are 1.77% and 1.04%, based on the PQS and AdjILLIQ measures, respectively. The study also shows that liquidity risk does not exhibit decreasing trend, and investors should consider liquidity risk in their portfolio diversification in the Finnish stock market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the context of multivariate regression (MLR) and seemingly unrelated regressions (SURE) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. in this paper, we propose finite-and large-sample likelihood-based test procedures for possibly non-linear hypotheses on the coefficients of MLR and SURE systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the relationship between the risk premium on the S&P 500 index return and its conditional variance. We use the SMEGARCH - Semiparametric-Mean EGARCH - model in which the conditional variance process is EGARCH while the conditional mean is an arbitrary function of the conditional variance. For monthly S&P 500 excess returns, the relationship between the two moments that we uncover is nonlinear and nonmonotonic. Moreover, we find considerable persistence in the conditional variance as well as a leverage effect, as documented by others. Moreover, the shape of these relationships seems to be relatively stable over time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nous y introduisons une nouvelle classe de distributions bivariées de type Marshall-Olkin, la distribution Erlang bivariée. La transformée de Laplace, les moments et les densités conditionnelles y sont obtenus. Les applications potentielles en assurance-vie et en finance sont prises en considération. Les estimateurs du maximum de vraisemblance des paramètres sont calculés par l'algorithme Espérance-Maximisation. Ensuite, notre projet de recherche est consacré à l'étude des processus de risque multivariés, qui peuvent être utiles dans l'étude des problèmes de la ruine des compagnies d'assurance avec des classes dépendantes. Nous appliquons les résultats de la théorie des processus de Markov déterministes par morceaux afin d'obtenir les martingales exponentielles, nécessaires pour établir des bornes supérieures calculables pour la probabilité de ruine, dont les expressions sont intraitables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Le modèle GARCH à changement de régimes est le fondement de cette thèse. Ce modèle offre de riches dynamiques pour modéliser les données financières en combinant une structure GARCH avec des paramètres qui varient dans le temps. Cette flexibilité donne malheureusement lieu à un problème de path dependence, qui a empêché l'estimation du modèle par le maximum de vraisemblance depuis son introduction, il y a déjà près de 20 ans. La première moitié de cette thèse procure une solution à ce problème en développant deux méthodologies permettant de calculer l'estimateur du maximum de vraisemblance du modèle GARCH à changement de régimes. La première technique d'estimation proposée est basée sur l'algorithme Monte Carlo EM et sur l'échantillonnage préférentiel, tandis que la deuxième consiste en la généralisation des approximations du modèle introduites dans les deux dernières décennies, connues sous le nom de collapsing procedures. Cette généralisation permet d'établir un lien méthodologique entre ces approximations et le filtre particulaire. La découverte de cette relation est importante, car elle permet de justifier la validité de l'approche dite par collapsing pour estimer le modèle GARCH à changement de régimes. La deuxième moitié de cette thèse tire sa motivation de la crise financière de la fin des années 2000 pendant laquelle une mauvaise évaluation des risques au sein de plusieurs compagnies financières a entraîné de nombreux échecs institutionnels. À l'aide d'un large éventail de 78 modèles économétriques, dont plusieurs généralisations du modèle GARCH à changement de régimes, il est démontré que le risque de modèle joue un rôle très important dans l'évaluation et la gestion du risque d'investissement à long terme dans le cadre des fonds distincts. Bien que la littérature financière a dévoué beaucoup de recherche pour faire progresser les modèles économétriques dans le but d'améliorer la tarification et la couverture des produits financiers, les approches permettant de mesurer l'efficacité d'une stratégie de couverture dynamique ont peu évolué. Cette thèse offre une contribution méthodologique dans ce domaine en proposant un cadre statistique, basé sur la régression, permettant de mieux mesurer cette efficacité.