298 resultados para Microelectronics
Resumo:
Resumo:
In this work, The TBS glass microspheres doped with Er3+ for morphology-dependent resonances of upconversion emission were designed. The glass sample components are 25TiO(2)-27BaCO(3)-8Ba(NO3)(2)-6ZnO(2)-9CaCO(3)-5H(3)BO(3)-10SiO(2)-7water glass-3Er(2)O(3) (wt%), and the emission spectra of TBS glass and a TBS glass microsphere (about 48 mum in diameter) were measured under 633 nm excitation and discussed. The strong morphology-dependent resonances of upconversion luminescences in the microsphere were observed. The observed resonances could be assigned by using the well-known Lorenz-Mie Formalism. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Si1-xGex/Si optoelectronic devices are promising for the monolithic integration with silicon-based microelectronics. SiGe/Si MQW RCE-PD (Resonant-Cavity-Enhanced photodiodes) with different structures were investigated in this work. Design and fabrication of top- and bottom-incident RCE-PD, such as growth of SiGe MQW (Multiple Quantum Wells) on Si and SOI (Si on insulator) wafers, bonding between SiGe epitaxial wafer and SOR (Surface Optical Reflector) consisting Of SiO2/Si DBR (Distributed Bragg Reflector) films on Si, and performances of RCE-PD, were presented. The responsivity of 44mA/W at 1.314 mum and the FWHM of 6nm were obtained at bias of 10V. The highest external quantum efficiency measured in the investigation is 4.2%.
Resumo:
This work demonstrates the condition optimization during liquid phase deposition (LPD) Of SiO2/GaAs films. LPD method is further applied to form Al2O3 films on semiconductors with poison-free materials. Proceeding at room temperature with inexpensive equipment, LPD of silica and alumina films is potentially serviceable in microelectronics and related spheres.
Resumo:
The epitaxial growth of AlxGa1-xN film with high Al content by metalorganic chemical vapor deposition (MOCVD) has been accomplished. The resulting Al content was determined to be 54% by high resolution X-ray diffraction (HRXRD) and Vegard's law. The full width at half maximum (FWHM) of the AlGaN (0002) HRXRD rocking curve was about 597 arcsec. Atomic force microscopy (AFM) image showed a relatively rough surface with grain-like islands, mainly coming from the low surface mobility of adsorbed Alspecies. From transmittance measurement, the cut-off wavelength was around 280 nm and Fabry-Perot fringes were clearly visible in the transmission region. Cathodoluminescence (CL) measurement indicated that there existed a uniformity in the growth direction and a non-uniformity in the lateral direction. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
AlGaN/GaN high electron mobility transistors (HEMTs) on 6H-SiC with varying field-plate length and gate-drain spacing were fabricated and analyzed. The classical small signal FET model and the well-known ColdFET method were used to extract the small signal parameters of the devices. Though the devices with field plates exhibited lower better f(T) characteristic, they did demonstrate better f(max), MSG and power density performances than the conventional devices without field plate. Besides, no independence of DC characteristic on field-plate length was observed. With the increase of the field-plate length and the gate-drain spacing, the characteristic of f(T) and f(max), degraded due to the large parasitic effects. Loadpull method was used to measure the microwave power performance of the devices. Under the condition of continuous wave at 5.4 GHz, an output power density of 4.69 W/mm was obtained for device with field-plate length of 0.5 mu m and gate-drain length of 2 mu m. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
p(+)-pi-n(-)-n(+) ultraviolet photodetectors based on 4H-SiC homoepilayers have been presented. The growth of the 4H-SiC homoepilayers was carried out in a LPCVD system. The size of the active area of the photodetectors was 300 x 300 mu m(2). The dark and illuminated I-V characteristics had been measured at reverse biases form 0 to 20 V at room temperature, and the illuminated current was at least two orders of magnitude than that of dark current below 13 V bias. The peak value zones of the photoresponse were located at 280-310 nm at different reverse biases, and the peak value located at 300 nm was 100 times greater than the cut-off response value in 380 nm at a bias of 10V, which showed the device had good visible blind performance. A small red-shift about 5 nm on the peak responsivity occurred when reverse bias increased from 5 to 15 V. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
AlGaN/GaN npn heterojunction bipolar transistor structures were grown by low-pressure MOCVD. Secondary ion mass spectroscopy (SIMS) measurements were carried out to study the Mg memory effect and redistribution in the emitter-base junction. The results indicated that there is a Mg-rich film formed in the ongrowing layer after the Cp2Mg source is switched off. The Mg-rich film can be confined in the base section by switching off the Cp2Mg source for appropriate time before the end of base growth. Low temperature growth of the undoped GaN spacer suppresses the Mg redistribution from Mg rich film. The delay rate of the Mg profile in sample C with spacer growing in low temperature is about 56 nm/decade, which becomes sharper than 80 nm/decade of the samples A and B without low temperature spacer. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Self-assembled quantum dots and wires were obtained in the InxGa1-xAs/GaAs and InAs/In0.52Al0.48As/InP systems, respectively, using molecular beam epitaxy (MBE). Uniformity in the distribution, density, and spatial ordering of the nanostructures can be controlled to some extent by adjusting and optimizing the MBE growth parameters. In addition, some interesting observation on the InAs wire alignment on InP(001) is discussed. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The measurements of one hundred 1.3 mu m planar buried crescent (PBC) structure InGaAsP/InP lasers demonstrate that parameters given by the electrical derivative of varied temperature and the variation of the parameters with temperature can be used to appraise the quality and reliability of semiconductor lasers effectual. By measurement of electrical derivative curves one can evaluate the quality of epitaxial wafer and chip, find the problems in the material and the technology, offer the useful information on increasing the quality and improving the technology of devices. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A linear photodiode array spectrometer based, high resolution interrogation technique for fiber Bragg grating sensors is demonstrated. Spline interpolation and Polynomial Approximation Algorithm (PAA) are applied to the data points acquired by the spectrometer to improve the original PAA based interrogation method. Thereby fewer pixels are required to achieve the same resolution as original. Theoretical analysis indicates that if the FWHM of a FBG covers more than 3 pixels, the resolution of central wavelength shift will arrive at less than 1 pm. While the number of pixels increases to 6, the nominal resolution will decrease to 0.001 pm. Experimental result shows that Bragg wavelength resolution of similar to 1 pm is obtained for a FBG with FWHM of similar to 0.2 nm using a spectrometer with a pixel resolution of similar to 70 pm.
Resumo:
Pressure sensitivity of the fiber optic mandrel hydrophone is analyzed in this paper. Based on the theory of elasticity, the mechanism of the pressure response is studied. The influence of the optical fiber on the compliant mandrel on the pressure response is taken into consideration for the first time. The radial deformation of the mandrel under the pressure of the fiber optic and the underwater pressure is analyzed in details. Based on the theory of photo-elasticity, the phase shift of the Mach-Zehnder interferometer is given. The pressure sensitivity is evaluated both theoretically and experimentally, and the results show a good correlation between the theoretical and experimental results.
Resumo:
A convenient fabrication technology for large-area, highly-ordered nanoelectrode arrays on silicon substrate has been described here, using porous anodic alumina (PAA) as a template. The ultrathin PAA membranes were anodic oxidized utilizing a two-step anodization method, from Al film evaporated on substrate. The purposes for the use of two-step anodization were, first, improving the regularity of the porous structures, and second reducing the thickness of the membranes to 100 similar to 200 nm we desired. Then the nanoelectrode arrays were obtained by electroless depositing Ni-W alloy into the through pores of PAA membranes, making the alloy isolated by the insulating pore walls and contacting with the silicon substrates at the bottoms of pores. The Ni-W alloy was also electroless deposited at the back surface of silicon to form back electrode. Then ohmic contact properties between silicon and Ni-W alloy were investigated after rapid thermal annealing. Scanning electron microscopy (SEM) observations showed the structure characteristics, and the influence factors of fabrication effect were discussed. The current voltage (I-V) curves revealed the contact properties. After annealing in N-2 at 700 degrees C, good linear property was shown with contact resistance of 33 Omega, which confirmed ohmic contacts between silicon and electrodes. These results presented significant application potential of this technology in nanosize current-injection devices in optoelectronics, microelectronics and bio-medical fields.
Resumo:
A power amplifier MIC with power combining based on AlGaN/GaN HEMTs was fabricated and measured. The amplifier consists of four 10×120μm transistors. A Wilkinson splitters and combining were used to divide and combine the power. By biasing the amplifier at V_(DS) =40V, I(DS)= 0. 9A, a maximum CW output power of 41. 4dBm with a maximum power added efficiency (PAE) of 32. 54% and a power combine efficiency of 69% was achieved at 5. 4GHz.
Resumo:
AlGaN/AlN/GaN high electron mobility transistor (HEMT) structures with a high-mobility GaN thin layer as a channel are grown on high resistive 6H-SiC substrates by metalorganic chemical vapor deposition. The HEMT structure exhibits a typical two-dimensional electron gas (2DEG) mobility of 1944cm2/(V · s) at room temperature and 11588cm2/(V· s) at 80K with almost equal 2DEG concentrations of about 1.03 × 1013 cm-2 High crystal quality of the HEMT structures is confirmed by triple-crystal X-ray diffraction analysis. Atomic force microscopy measurements reveal a smooth AlGaN surface with a root-mean-square roughness of 0. 27nm for a scan area of 10μm × 10μm. HEMT devices with 0.8μm gate length and 1.2mm gate width are fabricated using the structures. A maximum drain current density of 957mA/mm and an extrinsic transconductance of 267mS/mm are obtained.