997 resultados para Latent trigger point
Resumo:
Partial shading and rapidly changing irradiance conditions significantly impact on the performance of photovoltaic (PV) systems. These impacts are particularly severe in tropical regions where the climatic conditions result in very large and rapid changes in irradiance. In this paper, a hybrid maximum power point (MPP) tracking (MPPT) technique for PV systems operating under partially shaded conditions witapid irradiance change is proposed. It combines a conventional MPPT and an artificial neural network (ANN)-based MPPT. A low cost method is proposed to predict the global MPP region when expensive irradiance sensors are not available or are not justifiable for cost reasons. It samples the operating point on the stairs of I–V curve and uses a combination of the measured current value at each stair to predict the global MPP region. The conventional MPPT is then used to search within the classified region to get the global MPP. The effectiveness of the proposed MPPT is demonstrated using both simulations and an experimental setup. Experimental comparisons with four existing MPPTs are performed. The results show that the proposed MPPT produces more energy than the other techniques and can effectively track the global MPP with a fast tracking speed under various shading patterns.
Resumo:
With a focus to optimising the life cycle performance of Australian Railway bridges, new bridge classification and environmental classification systems are proposed. The new bridge classification system is mainly to facilitate the implementation of novel Bridge Management System (BMS) which optimise the life cycle cost both at project level and network level while environment classification is mainly to improve accuracy of Remaining Service Potential (RSP) module of the proposed BMS. In fact, limited capacity of the existing BMS to trigger the maintenance intervention point is an indirect result of inadequacies of the existing bridge and environmental classification systems. The proposed bridge classification system permits to identify the intervention points based on percentage deterioration of individual elements and maintenance cost, while allowing performance based rating technique to implement for maintenance optimisation and prioritisation. Simultaneously, the proposed environment classification system will enhance the accuracy of prediction of deterioration of steel components.
Resumo:
Intramedullary nailing is the standard fixation method for displaced diaphyseal fractures of tibia. Selection of the correct nail insertion point is important for axial alignment of bone fragments and to avoid iatrogenic fractures. However, the standard entry point (SEP) may not always optimise the bone-nail fit due to geometric variations of bones. This study aimed to investigate the optimal entry for a given bone-nail pair using the fit quantification software tool previously developed by the authors. The misfit was quantified for 20 bones with two nail designs (ETN and ETN-Proximal Bend) related to the SEP and 5 entry points which were 5 mm and 10 mm away from the SEP. The SEP was the optimal entry point for 50% of the bones used. For the remaining bones, the optimal entry point was located 5 mm away from the SEP, which improved the overall fit by 40% on average. However, entry points 10 mm away from the SEP doubled the misfit. The optimised bone-nail fit can be achieved through the SEP and within the range of a 5 mm radius, except posteriorly. The study results suggest that the optimal entry point should be selected by considering the fit during insertion and not only at the final position.
Resumo:
Bushfire responsive design and management strategy at the bioregion scale. 248 Page document containing text, original designs, photographs, masterplans and critique - created as an alternative community-based strategy for risk mitigation and management reponse to bushfire in the Point Henry and Bremer Bay region of Western Australia. Document drafted as an alternative to a local government commissioned plan which had many shortcomings. It was presented as a 'powerpoint' presentaion at a public meeting in Bremer Bay on 7th April 2014 and disseminated to local community members and councillors to encourage public debate and feedback to the Shire of Jerramungup, WA.
Resumo:
Context Cancer patients experience a broad range of physical and psychological symptoms as a result of their disease and its treatment. On average, these patients report ten unrelieved and co-occurring symptoms. Objectives To determine if subgroups of oncology outpatients receiving active treatment (n=582) could be identified based on their distinct experience with thirteen commonly occurring symptoms; to determine whether these subgroups differed on select demographic, and clinical characteristics; and to determine if these subgroups differed on quality of life (QOL) outcomes. Methods Demographic, clinical, and symptom data from one Australian and two U.S. studies were combined. Latent class analysis (LCA) was used to identify patient subgroups with distinct symptom experiences based on self-report data on symptom occurrence using the Memorial Symptom Assessment Scale (MSAS). Results Four distinct latent classes were identified (i.e., All Low (28.0%), Moderate Physical and Lower Psych (26.3%), Moderate Physical and Higher Psych (25.4%), All High (20.3%)). Age, gender, education, cancer diagnosis, and presence of metastatic disease differentiated among the latent classes. Patients in the All High class had the worst QOL scores. Conclusion Findings from this study confirm the large amount of interindividual variability in the symptom experience of oncology patients. The identification of demographic and clinical characteristics that place patients are risk for a higher symptom burden can be used to guide more aggressive and individualized symptom management interventions.
Resumo:
This paper relates to the importance of impact of the chosen bottle-point method when conducting ion exchange equilibria experiments. As an illustration, potassium ion exchange with strong acid cation resin was investigated due to its relevance to the treatment of various industrial effluents and groundwater. The “constant mass” bottle-point method was shown to be problematic in that depending upon the resin mass used the equilibrium isotherm profiles were different. Indeed, application of common equilibrium isotherm models revealed that the optimal fit could be with either the Freundlich or Temkin equations, depending upon the conditions employed. It could be inferred that the resin surface was heterogeneous in character, but precise conclusions regarding the variation in the heat of sorption were not possible. Estimation of the maximum potassium loading was also inconsistent when employing the “constant mass” method. The “constant concentration” bottle-point method illustrated that the Freundlich model was a good representation of the exchange process. The isotherms recorded were relatively consistent when compared to the “constant mass” approach. Unification of all the equilibrium isotherm data acquired was achieved by use of the Langmuir Vageler expression. The maximum loading of potassium ions was predicted to be at least 116.5 g/kg resin.
Resumo:
Local spatio-temporal features with a Bag-of-visual words model is a popular approach used in human action recognition. Bag-of-features methods suffer from several challenges such as extracting appropriate appearance and motion features from videos, converting extracted features appropriate for classification and designing a suitable classification framework. In this paper we address the problem of efficiently representing the extracted features for classification to improve the overall performance. We introduce two generative supervised topic models, maximum entropy discrimination LDA (MedLDA) and class- specific simplex LDA (css-LDA), to encode the raw features suitable for discriminative SVM based classification. Unsupervised LDA models disconnect topic discovery from the classification task, hence yield poor results compared to the baseline Bag-of-words framework. On the other hand supervised LDA techniques learn the topic structure by considering the class labels and improve the recognition accuracy significantly. MedLDA maximizes likelihood and within class margins using max-margin techniques and yields a sparse highly discriminative topic structure; while in css-LDA separate class specific topics are learned instead of common set of topics across the entire dataset. In our representation first topics are learned and then each video is represented as a topic proportion vector, i.e. it can be comparable to a histogram of topics. Finally SVM classification is done on the learned topic proportion vector. We demonstrate the efficiency of the above two representation techniques through the experiments carried out in two popular datasets. Experimental results demonstrate significantly improved performance compared to the baseline Bag-of-features framework which uses kmeans to construct histogram of words from the feature vectors.
An external field prior for the hidden Potts model with application to cone-beam computed tomography
Resumo:
In images with low contrast-to-noise ratio (CNR), the information gain from the observed pixel values can be insufficient to distinguish foreground objects. A Bayesian approach to this problem is to incorporate prior information about the objects into a statistical model. A method for representing spatial prior information as an external field in a hidden Potts model is introduced. This prior distribution over the latent pixel labels is a mixture of Gaussian fields, centred on the positions of the objects at a previous point in time. It is particularly applicable in longitudinal imaging studies, where the manual segmentation of one image can be used as a prior for automatic segmentation of subsequent images. The method is demonstrated by application to cone-beam computed tomography (CT), an imaging modality that exhibits distortions in pixel values due to X-ray scatter. The external field prior results in a substantial improvement in segmentation accuracy, reducing the mean pixel misclassification rate for an electron density phantom from 87% to 6%. The method is also applied to radiotherapy patient data, demonstrating how to derive the external field prior in a clinical context.
Resumo:
This paper aims to develop a meshless approach based on the Point Interpolation Method (PIM) for numerical simulation of a space fractional diffusion equation. Two fully-discrete schemes for the one-dimensional space fractional diffusion equation are obtained by using the PIM and the strong-forms of the space diffusion equation. Numerical examples with different nodal distributions are studied to validate and investigate the accuracy and efficiency of the newly developed meshless approach.
Resumo:
The April 2015 edition of Curriculum Perspectives has a special focus and casts light on the continuing development of the Australian Curriculum. This paper provides an introduction to a series of papers in the Point and Counterpoint section of this edition on the Review of the Australian Curriculum with reference to History. It makes clear that History is one of the most contested areas of the curriculum and that whilst politicians and policy makers are concerned with the importance of history in relation to national identity and nation building, history serves other purposes. The paper reiterates the need to pay attention to the particularities of discipline–based knowledge for the study of history in schools and the central role of inquiry for student learning in history. In doing so, it establishes the context for the five papers which follow.
Resumo:
As cities are rapidly developing new interventions against climate change, embedding renewable energy in public spaces is an important strategy. However, most interventions primarily include environmental sustainability while neglecting the social and economic interrelationships of electricity production. Although there is a growing interest in sustainability within environmental design and landscape architecture, public spaces are still awaiting viable energy-conscious design and assessment interventions. The purpose of this paper is to investigate this issue in a renowned public space—Ballast Point Park in Sydney—using a triple bottom line (TBL) case study approach. The emerging factors and relationships of each component of TBL, within the context of public open space, are identified and discussed. With specific focus on renewable energy distribution in and around Ballast Point Park, the paper concludes with a general design framework, which conceptualizes an optimal distribution of onsite electricity produced from renewable sources embedded in public open spaces.
Resumo:
Background: It is important for nutrition intervention in malnourished patients to be guided by accurate evaluation and detection of small changes in the patient’s nutrition status over time. However, the current Subjective Global Assessment (SGA) is not able to detect changes in a short period of time. The aim of the study was to determine whether 7-point SGA is more time sensitive to nutrition changes than the conventional SGA. Methods: In this prospective study, 67 adult inpatients assessed as malnourished using both the 7-point SGA and conventional SGA were recruited. Each patient received nutrition intervention and was followed up post-discharge. Patients were reassessed using both tools at 1, 3 and 5 months from baseline assessment. Results: It took significantly shorter time to see a one-point change using 7-point SGA compared to conventional SGA (median: 1 month vs. 3 months, p = 0.002). The likelihood of at least a one-point change is 6.74 times greater in 7-point SGA compared to conventional SGA after controlling for age, gender and medical specialties (odds ratio = 6.74, 95% CI 2.88-15.80, p<0.001). Fifty-six percent of patients who had no change in SGA score had changes detected using 7-point SGA. The level of agreement was 100% (k = 1, p < 0.001) between 7-point SGA and 3-point SGA and 83% (k=0.726, p<0.001) between two blinded assessors for 7-point SGA. Conclusion: The 7-point SGA is more time sensitive in its response to nutrition changes than conventional SGA. It can be used to guide nutrition intervention for patients.
Resumo:
An increasingly regulated higher education sector is renewing its attention to those activities referred to as ‘moderation’ in its efforts to ensure that judgements of student achievement are based on appropriate standards. Moderation practices conducted throughout the assessment process can result in purposes identified as equity, justification, accountability and community building. This paper draws on the limited studies of moderation and wider relevant research on judgement, standards and professional learning to test commonly used moderation practices against these identified purposes. The paper concludes with recommendations for maximising the potential of moderation practices to establish and maintain achievement standards.