920 resultados para Isolate
Resumo:
The β-chemokine receptor CCR-5 is essential for the efficient entry of primary macrophage-tropic HIV-1 isolates into CD4+ target cells. To study CCR-5-dependent cell-to-cell fusion, we have developed an assay system based on the infection of CD4+ CCR-5+ HeLa cells with a Semliki Forest virus recombinant expressing the gp120/gp41 envelope (Env) from a primary clade B HIV-1 isolate (BX08), or from a laboratory T cell line-adapted strain (LAI). In this system, gp120/gp41 of the “nonsyncytium-inducing,” primary, macrophage-tropic HIV-1BX08 isolate, was at least as fusogenic as that of the “syncytium-inducing” HIV-1LAI strain. BX08 Env-mediated fusion was inhibited by the β-chemokines RANTES (regulated upon activation, normal T cell expressed and secreted) and macrophage inflammatory proteins 1β (MIP-1β) and by antibodies to CD4, whereas LAI Env-mediated fusion was insensitive to these β-chemokines. In contrast soluble CD4 significantly reduced LAI, but not BX08 Env-mediated fusion, suggesting that the primary isolate Env glycoprotein has a reduced affinity for CD4. The domains in gp120/gp41 involved in the interaction with the CD4 and CCR-5 molecules were probed using monoclonal antibodies. For the antibodies tested here, the greatest inhibition of fusion was observed with those directed to conformation-dependent, rather than linear epitopes. Efficient inhibition of fusion was not restricted to epitopes in any one domain of gp120/gp41. The assay was sufficiently sensitive to distinguish between antibody- and β-chemokine-mediated fusion inhibition using serum samples from patient BX08, suggesting that the system may be useful for screening human sera for the presence of biologically significant antibodies.
Resumo:
To understand how virulent mycobacteria subvert host immunity and establish disease, we examined the differential response of mice to infection with various human outbreak Mycobacterium tuberculosis clinical isolates. One clinical isolate, HN878, was found to be hypervirulent, as demonstrated by unusually early death of infected immune-competent mice, compared with infection with other clinical isolates. The differential effect on survival required lymphocyte function because severe combined immunodeficiency (SCID) mice infected with HN878 or other clinical isolates all died at the same rate. The hypervirulence of HN878 was associated with failure to induce M. tuberculosis-specific proliferation and IFN-γ production by spleen and lymph node cells from infected mice. In addition, 2- to 4-fold lower levels of tumor necrosis factor-α (TNF-α), IL-6, IL-12, and IFN-γ mRNAs were observed in lungs of HN878-infected mice. IL-10, IL-4, and IL-5 mRNA levels were not significantly elevated in lungs of HN878 infected mice. In contrast, IFN-α mRNA levels were significantly higher in lungs of these mice. To further investigate the role of Type 1 IFNs, mice infected with HN878 were treated intranasally with purified IFN-α/β. The treatment resulted in increased lung bacillary loads and even further reduced survival. These results suggest that the hypervirulence of HN878 may be due to failure of this strain to stimulate Th1 type immunity. In addition, the lack of development of Th1 immunity in response to HN878 appears to be associated with increased induction of Type 1 IFNs.
Resumo:
Gene targeting protocols for mammalian cells remain inefficient and labor intensive. Here we describe FASTarget, a rapid, fluorescent cell sorting based strategy to isolate rare gene targeting events in human somatic cells. A fluorescent protein is used as a means for direct selection of targeted clones obviating the need for selection and outgrowth of drug resistant clones. Importantly, the use of a promoter-less, ATG-less construct greatly facilitates the recovery of correctly targeted cells. Using this method we report successful gene targeting in up to 94% of recovered human somatic cell clones. We create functional EYFP-tagged knockin clones in both transformed and non-transformed human somatic cell lines providing a valuable tool for mammalian cell biology. We further demonstrate the use of this technology to create gene knockouts. Using this generally applicable strategy we can recover gene targeted clones within approximately one month from DNA construct delivery to obtaining targeted monoclonal cell lines.
Resumo:
Two new antibacterial agents, rugulotrosin A (1) and B (2), were obtained from cultures of a Penicillium sp. isolated from soil samples acquired near Sussex Inlet, New South Wales, Australia. Rugulotrosin A (1) is a chiral symmetric dimer, and its relative stereostructure was determined by spectroscopic and X-ray crystallographic analysis. Rugulotrosin B (2) is a chiral asymmetric dimer isomeric with 1. Its structure was determined by spectroscopic analysis with comparison to the co-metabolite 1 and previously reported fungal metabolites. Both rugulotrosins A and B displayed significant antibacterial activity against Bacillus subtilis, while rugulotrosin A was also strongly active against Enterococcus faecalis and B. cereus.
Resumo:
Three new aromatic butenolides, gymnoascolides A-C (1-3), have been isolated from the Australian soil ascomycete Gymnoascus reessii and assigned structures on the basis of detailed spectroscopic analysis. The absolute configurations of gymnoascolides B (2) and C (3) at C-5 were solved using a combination of chemical derivatization and quantum chemical simulations.
Resumo:
An Australian isolate of Penicillium striatisporum collected near Shalvey, New South Wales, exhibited selective antifungal activity against Candida albicans versus Saccharomyces cerevisiae. Bioassay-directed fractionation yielded members of the rare class of fungal metabolites known as the calbistrins. These included a new example of this structure class, calbistrin E (1), as well as the known polyenes calbistrin C (2) and deformylcalbistrin A (3). Also recovered from P. striatisporum were new triene and butenolide acids, striatisporin A (4) and striatisporolide A (5), together with the known fungal metabolites versiol (6) and (+)-hexylitaconic acid (7). Structures for all metabolites were determined by detailed spectroscopic analysis.
Resumo:
The new isoprenylated diketopiperazine roquefortine E (6) has been isolated from an Australian soil isolate of the ascomycete Gymnoascus reessii. The known fungal metabolite roquefortine C (1) was also recovered as the major antibacterial principle, and all structures were assigned by detailed spectroscopic analysis.
Resumo:
An Australian isolate of the soil ascomycete Gymnoascus reessii yielded a series of cytotoxic metabolites, including the known polyenylpyrroles rumbrin (1) and auxarconjugatin A (2), and the new rumbrin stereoisomer 12E-isorumbrin (3), as well as an unprecedented class of polyenylfurans exemplified by gymnoconjugatins A (4) and B (5). Structures were assigned with detailed spectroscopic analysis.
Resumo:
Acknowledgements KK, MJ, RE and HD are grateful for financial support through the Leverhulme Trust-Royal Society Africa award (AA090088). MJ, RE, HD, JT and KH thank EU FP7 for financial support (contract no. 312184). HD thanks the School of Natural and Computing Sciences, University of Aberdeen, for a PhD scholarship to XLW. PCD gratefully acknowledges grants from the National Institute of Health (GM097509 and GMS10RR029121). We thank the Bruker Therapeutic Discovery Mass Spectrometry Center for recording the MSn spectra.
Resumo:
Acknowledgements K. N. N. was supported by the Teagasc Vision Programme on Obesity (RMIS5974). L. M. was supported by the Teagasc Walsh Fellowship. J. R. S. was supported by a 1000-talents professorship from the Chinese government. The funding bodies had no input on the design of the study or in the interpretation of the data. The authors’ contributions are as follows: L. M., J. R. S., J. F. C. and K. N. N. designed the study; K. N. N. and J. F. C. obtained ethical approval for the study; L. M. performed the experiments; L. M. and J. R. S. analysed the data; L. M. generated the figures. All authors contributed to the drafting of the manuscript. All authors approved the final version for submission. The authors declare that there is no competing interest.
Resumo:
The first complete genome sequence of capsicum chlorosis virus (CaCV) from Australia was determined using a combination of Illumina HiSeq RNA and Sanger sequencing technologies. Australian CaCV had a tripartite genome structure like other CaCV isolates. The large (L) RNA was 8913 nucleotides (nt) in length and contained a single open reading frame (ORF) of 8634 nt encoding a predicted RNA-dependent RNA polymerase (RdRp) in the viral-complementary (vc) sense. The medium (M) and small (S) RNA segments were 4846 and 3944 nt in length, respectively, each containing two non-overlapping ORFs in ambisense orientation, separated by intergenic regions (IGR). The M segment contained ORFs encoding the predicted non-structural movement protein (NSm; 927 nt) and precursor of glycoproteins (GP; 3366 nt) in the viral sense (v) and vc strand, respectively, separated by a 449-nt IGR. The S segment coded for the predicted nucleocapsid (N) protein (828 nt) and non-structural suppressor of silencing protein (NSs; 1320 nt) in the vc and v strand, respectively. The S RNA contained an IGR of 1663 nt, being the largest IGR of all CaCV isolates sequenced so far. Comparison of the Australian CaCV genome with complete CaCV genome sequences from other geographic regions showed highest sequence identity with a Taiwanese isolate. Genome sequence comparisons and phylogeny of all available CaCV isolates provided evidence for at least two highly diverged groups of CaCV isolates that may warrant re-classification of AIT-Thailand and CP-China isolates as unique tospoviruses, separate from CaCV.
Resumo:
Motile Aeromonas are the most common bacteria of freshwater in the world that cause disease in fish and other cold-blooded and warm-blooded hosts. Among this group of bacteria, Aeromonas hydrophila is important in causing complications such as fin rot, skin ulcers and lethal hemorrhagic septicemia in fish. Several virulence factors involved in the pathogenesis of Aeromonas hydrophila, including extracellular enzymes (protease, lipase, elastase, gelatinase and nuclease) and toxins. From the exotoxins, hemolysin, aerolysin and cytolytic enterotoxin play an important role in pathogenesis. Detection of virulence markers by PCR as a key component of determining the pathogenesis of the bacteria and using indigenous vaccines for better immunization against this disease is important. In this study, a total of 200 fanned carps (126 common carp. 39 silver carp and 35 of grass carp) with symptoms suspected aeromonas septicemia were isolated from Khouzestan province farms. 125 bacteria belong to Aeromonas genus detected by biochemical and PCR methods. 31 of all isolates recognized as Aeromonas hydrophila with biochemical methods, I6srRNA detection and Lipase genes. Results showed that the role of Aeromonas sp. and Aeromonas hydrophila in fish with disease symptoms were 62.5% and 15.5% respectively. By using specific primers, three virulence genes including hemolysin, aerolysine and cytolytic enterotoxin were detected in these confirmed isolates, that 18 isolates (58/06%) hemolysin positive (hlyA +), 16 isolates (51/61%) aerolysine positive (aerA+) and 23 isolates (74/19%) for cytolytic enterotoxin gene (act+) were positive. The result of present study showed that most of the confirmed isolates genotype was hlyA+ act- with frequency equal to 51/61%. For investigating the protection effect of acut strain of bacteria, UV inactivated bacterin was used.