952 resultados para Integrated circuit packaging


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and easy approach to produce polymeric microchips with integrated copper electrodes for capacitively coupled contactless conductivity detection (CD) is described. Copper electrodes were fabricated using a printed circuit board (PCB) as an inexpensive thin-layer of metal. The electrode layout was first drawn and laser printed on a wax paper sheet. The toner layer deposited on the paper sheet was thermally transferred to the PCB surface working as a mask for wet chemical etching of the copper layer. After the etching step, the toner was removed with an acetonitrile-dampened cotton. A poly(ethylene terephthalate) (PET) film coated with a thin thermo-sensitive adhesive layer was used to laminate the PCB plate providing an insulator layer of the electrodes to perform CID measurements. Electrophoresis microchannels were fabricated in poly(dimethylsiloxane) (PDMS) by soft lithography and reversibly sealed against the PET film. These hybrid PDMS/PET chips exhibited a stable electroosmotic mobility of 4.25 +/- 0.04 x 10(-4) V cm(-2) s(-1), at pH 6.1, over fifty runs. Efficiencies ranging from 1127 to 1690 theoretical plates were obtained for inorganic cations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present the fabrication and operation of incandescent microlamps for integrated optics applications. This microlamp emits white and infrared light from a chromium resistor embedded in a free-standing silicon oxynitride (SiO(x)N(y)) cantilever that can be coupled to an optical waveguide. In fact, the chromium resistor is sandwiched between layers of SiO(x)N(y) that isolate it from the atmosphere, while electric current heats the resistor to incandescent temperatures. The same SiO(x)N(y) material used in the microlamp fabrication is also used to produce the optical waveguides to allow a monolithic integration of light source and optical circuit. Front-side bulk micromachining of the silicon substrate in potassium hydroxide (KOH) solution is used to fabricate the cantilevers that thermally isolate the resistors from the substrate, thus reducing the heat transfer and the current required to light the lamp.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Independent studies have shown that the median raphe nucleus (MRN) and dorsal hippocampus (DH) are involved in the expression of contextual conditioned fear (CFC). However, studies that examine the integrated involvement of serotonergic mechanisms of the MRN-DH are lacking. To address this issue, a CFC paradigm was used to test whether the serotonergic projections from the MRN to DH can influence CFC. Serotoninergic drugs were infused either into the MRN or DH prior to testing sessions in which freezing and startle responses were measured in the same context where 6 h previously rats received footshocks. A reduction of serotonin (5-HT) transmission in the MRN by local infusions of the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) decreased freezing in response to the context but did not reduce fear-potentiated startle. This pattern of results is consistent with the hypothesis that MRN serotonergic mechanisms selectively modulate the freezing response to the aversive context. As for the DH, a decrease in postsynaptic 5-HT receptor activity at projection areas has been proposed to be the main consequence of 5-HT(1A) receptor activation in the MIRN. Intra-DH injections of 8-OH-DPAT inhibited both the freezing and fear-potentiated startle response to the context. To reconcile these findings, an inhibitory mechanism may exist between the incoming 5-HT pathway from the MRN to DH and the neurons of the DH output to other structures. The DH-amygdala or medial prefrontal cortex projections could well be this output circuit modulating the expression of CFC as revealed by measurements of Fos immunoreactivity in these areas. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A voltage limiter circuit for indoor light energy harvesting applications is presented. This circuit is a part of a bigger system, whose function is to harvest indoor light energy, process it and store it, so that it can be used at a later time. This processing consists on maximum power point tracking (MPPT) and stepping-up, of the voltage from the photovoltaic (PV) harvester cell. The circuit here described, ensures that even under strong illumination, the generated voltage will not exceed the limit allowed by the technology, avoiding the degradation, or destruction, of the integrated die. A prototype of the limiter circuit was designed in a 130 nm CMOS technology. The layout of the circuit has a total area of 23414 mu m(2). Simulation results, using Spectre, are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and a two building-blocks active circuit are presented and give insight into the physics of the device. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of high performance monolithic RF front-ends requires innovative RF circuit design to make the best of a good technology. A fully differential approach is usually preferred, due to its well-known properties. Although the differential approach must be preserved inside the chip, there are cases where the input signal is single-ended such as RF image filters and IF filters in a RF receiver. In these situations, a stage able to convert single-ended into differential signals (balun) is needed. The most cited topology, which is capable of providing high gain, consists on a differential stage with one of the two inputs grounded. Unfortunately, this solution has some drawbacks when implemented monolithically. This work presents the design and simulated results of an innovative high-performance monolithic single to differential converter, which overcomes the limitations of the circuits.The integration of the monolithic active balun circuit with an LNA on a 0.18μm CMOS process is also reported. The circuits presented here are aimed at 802.11a. Section 2 describes the balun circuit and section 3 presents its performance when it is connected to a conventional single-ended LNA. Section 4 shows the simulated performance results focused at phase/amplitude balance and noise figure. Finally, the last section draws conclusions and future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A genetic algorithm used to design radio-frequency binary-weighted differential switched capacitor arrays (RFDSCAs) is presented in this article. The algorithm provides a set of circuits all having the same maximum performance. This article also describes the design, implementation, and measurements results of a 0.25 lm BiCMOS 3-bit RFDSCA. The experimental results show that the circuit presents the expected performance up to 40 GHz. The similarity between the evolutionary solutions, circuit simulations, and measured results indicates that the genetic synthesis method is a very useful tool for designing optimum performance RFDSCAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Avalanche photodiodes operated in the Geiger mode offer a high intrinsic gain as well as an excellent timing accuracy. These qualities make the sensor specially suitable for those applications where detectors with high sensitivity and low timing uncertainty are required. Moreover, they are compatible with standard CMOS technologies, allowing sensor and front-end electronics integration within the pixel cell. However, the sensor suffers from high levels of intrinsic noise, which may lead to erroneous results and limit the range of detectable signals. They also increase the amount of data that has to be stored. In this work, we present a pixel based on a Geiger-mode avalanche photodiode operated in the gated mode to reduce the probability to detect noise counts interfering with photon arrival events. The readout circuit is based on a two grounds scheme to enable low reverse bias overvoltages and consequently lessen the dark count rate. Experimental characterization of the fabricated pixel with the HV-AMS 0.35µm standard technology is also presented in this article.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis was to examine the potential of multi-axis solutions in packaging machines produced in Europe. The definition of a multi-axis solution in this study is a construction that uses a common DC bus power supply for different amplifiers running the axes and the intelligence is centralized into one unit. The cost structure of a packaging machine was gained from an automation research, which divided the machines according to automation categories. The automation categories were then further divided into different sub-components by evaluating the ratio of multi-axis solutions compared to other automation components in packaging machines. A global motion control study was used for further information. With the help of the ratio, an estimation of the potential of multi-axis solutions in each country and packaging machine sector was completed. In addition to the research, a specific questionnaire was sent to five companies to gain information about the present situation and possible trends in packaging machinery. The greatest potential markets are in Germany and Italy, which are also the largest producers of packaging machinery in Europe. The greatest growth in the next few years will be seen in Turkey where the annual growth rate equals the general machinery production rate in Asia. The greatest market potential of the Nordic countries is found in Sweden in 35th position on the list. According to the interviews, motion control products in packaging machines will retain their current power levels, as well as the number of axes in the future. Integrated machine safety features together with a universal programming language are the desired attributes of the future. Unlike generally in industry, the energy saving objectives are and will remain insignificant in the packaging industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent times the packaging industry is finding means to maximize profit. Wood used to be the most advantageous and everyday material for packaging, worktables, counters, constructions, interiors, tools and as materials and utensils in the food companies in the world. The use of wood has declined vigorously, and other materials like plastic, ceramic, stainless steel, concrete, and aluminum have taken its place. One way that the industry could reduce its cost is by finding possibilities of using wood for primary packaging after which it can be safely recycled or burned as a carbon source for energy. Therefore, the main objective of this thesis is to investigate the possibility of press-forming a wood film into primary packaging. In order to achieve the stated objectives, discussion on major characteristics of wood in terms of structure, types and application were studied. Two different wood species, pine and birch were used for the experimental work. These were provided by a local carpentry workshop in Lappeenranta and a workshop in Ruokolahti supervised by Professor Timo Kärki. Laboratory tests were carried out at Lappeenranta University of Technology FMS workshop on Stenhøj EPS40 M hydraulic C-frame press coupled with National Instruments VI Logger and on the Adjustable packaging line machine at LUT Packaging laboratory. The tests succeeded better on the LUT packaging line than on the Stenhoj equipment due to the integrated heating system in the machine. However, there is much work to be done before the quality of a tray produced from the wood film is comparable to that of the wood plastic composite tray.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monitoring and control of hydrogen sulfide (H2S) level is of great interest for a wide range of application areas including food quality control, defense and antiterrorist applications and air quality monitoring e.g. in mines. H2S is a very poisonous and flammable gas. Exposure to low concentrations of H2S can result in eye irritation, a sore throat and cough, shortness of breath, and fluid retention in the lungs. These symptoms usually disappear in a few weeks. Long-term, low-level exposure may result in fatigue, loss of appetite, headache, irritability, poor memory, and dizziness. Higher concentrations of 700 - 800 ppm tend to be fatal. H2S has a characteristic smell of rotten egg. However, because of temporary paralysis of olfactory nerves, the smelling capability at concentrations higher than 100 ppm is severely compromised. In addition, volatile H2S is one of the main products during the spoilage of poultry meat in anaerobic conditions. Currently, no commercial H2S sensor is available which can operate under anaerobic conditions and can be easily integrated in the food packaging. This thesis presents a step-wise progress in the development of printed H2S gas sensors. Efforts were made in the formulation, characterization and optimization of functional printable inks and coating pastes based on composites of a polymer and a metal salt as well as a composite of a metal salt and an organic acid. Different processing techniques including inkjet printing, flexographic printing, screen printing and spray coating were utilized in the fabrication of H2S sensors. The dispersions were characterized by measuring turbidity, surface tension, viscosity and particle size. The sensing films were characterized using X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and an electrical multimeter. Thin and thick printed or coated films were developed for gas sensing applications with the aim of monitoring the H2S concentrations in real life applications. Initially, a H2S gas sensor based on a composite of polyaniline and metal salt was developed. Both aqueous and solvent-based dispersions were developed and characterized. These dispersions were then utilized in the fabrication of roll-to-roll printed H2S gas sensors. However, the humidity background, long term instability and comparatively lower detection limit made these sensors less favourable for real practical applications. To overcome these problems, copper acetate based sensors were developed for H2S gas sensing. Stable inks with excellent printability were developed by tuning the surface tension, viscosity and particle size. This enabled the formation of inkjet-printed high quality copper acetate films with excellent sensitivity towards H2S. Furthermore, these sensors showed negligible humidity effects and improved selectivity, response time, lower limit of detection and coefficient of variation. The lower limit of detection of copper acetate based sensors was further improved to sub-ppm level by incorporation of catalytic gold nano-particles and subsequent plasma treatment of the sensing film. These sensors were further integrated in an inexpensive wirelessly readable RLC-circuit (where R is resistor, L is inductor and C is capacitor). The performance of these sensors towards biogenic H2S produced during the spoilage of poultry meat in the modified atmosphere package was also demonstrated in this thesis. This serves as a proof of concept that these sensors can be utilized in real life applications.