929 resultados para Integral Inequalities
La Accesibilidad universal en los municipios: guía para una política integral de promoción y gestión
Resumo:
Conscientes de las complejidades que presenta la organización administrativa local y la diversidad que caracteriza a los Ayuntamientos de España, y lejos de querer establecer fórmulas mágicas o generalizar soluciones, con esta Guía se pretende aportar ideas útiles mediante propuestas y algunos ejemplos; con ella se quiere ayudar a promover distintas intervenciones a favor de la accesibilidad en los municipios. En este sentido, esta Guía pretende ser soporte para desarrollar una nueva etapa de intervención municipal en accesibilidad, que vaya más allá de la mera supresión de barreras y se prevenga su creación. Las medidas que se desarrollan son posibles vías para que los gobiernos locales puedan gestionar y promocionar de forma eficaz la accesibilidad en el municipio y así establecer una base sobre la cual todos los ciudadanos puedan desarrollar sus libertades individuales plenamente.
Resumo:
Este Libro Verde pretende difundir, compartir y discutir públicamente la situación de la accesibilidad en España, así como los instrumentos y políticas puestos en marcha en los últimos años para su promoción y las necesarias reformas o iniciativas para avanzar en el proceso de supresión de todo tipo de barreras –arquitectónicas, urbanísticas, en el transporte, la comunicación e información, etc.– en nuestro país.
Resumo:
We study the existence theory for parabolic variational inequalities in weighted L2 spaces with respect to excessive measures associated with a transition semigroup. We characterize the value function of optimal stopping problems for finite and infinite dimensional diffusions as a generalized solution of such a variational inequality. The weighted L2 setting allows us to cover some singular cases, such as optimal stopping for stochastic equations with degenerate diffusion coeficient. As an application of the theory, we consider the pricing of American-style contingent claims. Among others, we treat the cases of assets with stochastic volatility and with path-dependent payoffs.
Resumo:
Des de la ciència geogràfica combinada amb el coneixement biològic i comercial, aquest projecte pretén crear una eina basada en la biogeografia i les últimes tecnologies de la Informació Geogràfica, que permetrà a l’usuari disposar de informació actualitzada per cada espècie amb interès comercial. El projecte es basa en el desenvolupament d’una aplicació web de consulta, entrada i actualització de dades referents a la producció pesquera internacional. Les eines utilitzades són les bases de dades MySQL i PostgreSQL i programació web amb html, php i javacript. Aquesta aplicació està pensada per ser accessible des de qualsevol ordinador amb connexió a internet i es subdivideix en tres sub-aplicacions. La primera sub-aplicació es basa en l’entrada d’espècies a partir de l’estructura taxonòmica. Partint de l’arbre taxonòmic, l’usuari té la possibilitat d’entrar, eliminar o modificar qualsevol tàxon o espècie. La segona subaplicació és una eina de digitalització cartogràfica on-line on l’usuari podrà marcar, eliminar o modificar sobre un mapa les localitzacions de les espècies que estiguin entrades en la sub-aplicació anterior. Finalment, la tercera sub-aplicació és una eina d’entrada de dades quinzenals referent als comportaments pel que fa tan a les dimensions com a les disponibilitats de pesca per cada espècie i localització.
Resumo:
The classical Lojasiewicz inequality and its extensions for partial differential equation problems (Simon) and to o-minimal structures (Kurdyka) have a considerable impact on the analysis of gradient-like methods and related problems: minimization methods, complexity theory, asymptotic analysis of dissipative partial differential equations, tame geometry. This paper provides alternative characterizations of this type of inequalities for nonsmooth lower semicontinuous functions defined on a metric or a real Hilbert space. In a metric context, we show that a generalized form of the Lojasiewicz inequality (hereby called the Kurdyka- Lojasiewicz inequality) relates to metric regularity and to the Lipschitz continuity of the sublevel mapping, yielding applications to discrete methods (strong convergence of the proximal algorithm). In a Hilbert setting we further establish that asymptotic properties of the semiflow generated by -∂f are strongly linked to this inequality. This is done by introducing the notion of a piecewise subgradient curve: such curves have uniformly bounded lengths if and only if the Kurdyka- Lojasiewicz inequality is satisfied. Further characterizations in terms of talweg lines -a concept linked to the location of the less steepest points at the level sets of f- and integrability conditions are given. In the convex case these results are significantly reinforced, allowing in particular to establish the asymptotic equivalence of discrete gradient methods and continuous gradient curves. On the other hand, a counterexample of a convex C2 function in R2 is constructed to illustrate the fact that, contrary to our intuition, and unless a specific growth condition is satisfied, convex functions may fail to fulfill the Kurdyka- Lojasiewicz inequality.
Resumo:
In this paper we introduce new functional spaces which we call the net spaces. Using their properties, the necessary and sufficient conditions for the integral operators to be of strong or weak-type are obtained. The estimates of the norm of the convolution operator in weighted Lebesgue spaces are presented.
Resumo:
In this paper we study boundedness of the convolution operator in different Lorentz spaces. In particular, we obtain the limit case of the Young-O'Neil inequality in the classical Lorentz spaces. We also investigate the convolution operator in the weighted Lorentz spaces. Finally, norm inequalities for the potential operator are presented.
Resumo:
In this paper we investigate the role of horospheres in Integral Geometry and Differential Geometry. In particular we study envelopes of families of horocycles by means of “support maps”. We define invariant “linear combinations” of support maps or curves. Finally we obtain Gauss-Bonnet type formulas and Chern-Lashof type inequalities.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
This paper develops an accounting framework to consider the effect of deaths on the longitudinal analysis of income-related health inequalities. Ignoring deaths or using inverse probability weights (IPWs) to re-weight the sample for mortality-related attrition can produce misleading results, since to do so would be to disregard the most extreme of all health outcomes. Incorporating deaths into the longitudinal analysis of income-related health inequalities provides a more complete picture in terms of the evaluation of health changes in respect to socioeconomic status. We illustrate our work by investigating health mobility in Quality Adjusted Life Years (QALYs) as measured by the SF6D from 1999 till 2004 using the British Household Panel Survey (BHPS). We show that for Scottish males explicitly accounting for the dead, rather than using IPWs to account for mortality-related attrition, changes the direction of the relationship between relative health changes and initial income position, while for other population groups it increases the strength of this relationship by up to 14 times. When deaths are explicitly incorporated into the analysis it is found that over this five year period for both Scotland and England & Wales the relative health changes were significantly regressive such that the poor experienced a larger share of the health losses relative to their initial share of health and a large amount of this was related to mortality.
Resumo:
This project will develop a modelling framework to explain changes in income-related health inequalities and benchmark the performance of Scotland in tackling income-related health inequalities, both over time and relative to that of England and Wales.
Resumo:
This paper measures the degree of inequality in child mortality rates across districts in India, using data from the 1981, 1991 and 2001 Indian population censuses. The results show that child mortality is more concentrated in less developed districts in all three census years. Further, between 1981 and 2001, the inequality in child mortality seems to have increased to the advantage of the more developed districts (i.e., there was an increasing concentration of child mortality in less developed districts). However, the inequality in female child mortality rates seems to have declined between 1991 and 2001, even as it increased – albeit at a slower rate than before – for male child mortality rates. In the decomposition analysis, it is found that while a more equitable distribution of medical facilities and safe drinking water across districts did contribute towards reducing inequality in child mortality between 1981 and 1991, different levels of structural change among districts were responsible for a very large part of the inequality in child mortality to the advantage of the more developed districts in all three census years. Other variables which played important roles in increasing inequality included a measure of infrastructure development, female literacy, and a social group status variable. The paper concludes with some brief comments on the policy implications of the findings.
Resumo:
"Vegeu el resum a l'inici del document del fitxer ajunt."
Resumo:
This paper proposes a new methodology, the Domination Index, to evaluate non-income inequalities between social groups such as inequalities of educational attainment, occupational status, health or subjective well-being. The Domination Index does not require specific cardinalisation assumptions, but only uses the ordinal structure of these non-income variables. We approach from an axiomatic perspective and show that a set of desirable properties for a group inequality measure when the variable of interest is ordinal, characterizes the Domination Index up to a positive scalar transformation. Moreover we make use of the Domination Index to explore the relation between inequality and segregation and show how these two concepts are related theoretically.
Resumo:
En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.