994 resultados para Hollow Inclusion Technique
Resumo:
Bananas are hosts to a large number of banana streak virus (BSV) species. However, diagnostic methods for BSV are inadequate because of the considerable genetic and serological diversity amongst BSV isolates and the presence of integrated BSV sequences in some banana cultivars which leads to false positives. In this study, a sequence non-specific, rolling-circle amplification (RCA) technique was developed and shown to overcome these limitations for the detection and subsequent characterisation of BSV isolates infecting banana. This technique was shown to discriminate between integrated and episomal BSV DNA, specifically detecting the latter in several banana cultivars known to contain episomal and/or integrated sequences of Banana streak Mysore virus (BSMyV), Banana streak OL virus (BSOLV) and Banana streak GF virus (BSGFV). Using RCA, the presence of BSMyV and BSOLV was confirmed in Australia, while BSOLV, BSGFV, Banana streak Uganda I virus (BSUgIV), Banana streak Uganda L virus (BSUgLV) and Banana streak Uganda M virus (BSUgMV) were detected in Uganda. This is the first confirmed report of episomally-derived BSUglV, BSUgLV and BSUgMV in Uganda. As well as its ability to detect BSV, RCA was shown to detect two other pararetroviruses, Sugarcane bacilliform virus in sugarcane and Cauliflower mosaic virus in turnip.
Resumo:
The emphasis on inclusion of diverse learners presents challenges to teachers, particularly those whose understandings have been framed by notions of school readiness and special education of children with disabilities or learning difficulties. This mixed method study of early years children and teachers across three school sites in Australia explored factors associated with children’s development, achievement and adjustment. The focus went beyond organizational or structural issues to consider pedagogic responses to diverse learners from the kindergarten class through Year 1 and Year 2. The study identified factors influencing children’s outcomes, and highlighted areas of tension between inclusive policies and normative understandings that have implications for teachers’ professional learning.
Resumo:
In early childhood settings prior to school and in the early years of primary school, debate continues over the meaning of inclusion and its scope in terms of the groups under consideration. The genealogies of early childhood education and care, early primary school, special education and cultural education were examined to identify recurring and emerging approaches to inclusion within Australian programs for children aged birth to eight years. Approaches to inclusion encompassing multiple forms of diversity co-exist in the Australian educational literature with targeted approaches focused on disabilities or risk. These differing approaches reflect underlying ideological divisions and varying assumptions about diversity. Multiple approaches, including the expansion of early childhood services, reflect tensions over children’s rights, conceptualisations of inclusion, expectations of teachers, system coordination, economic constraints and political pressure to cater for a complex range of young children in varied settings. The paper incorporates discussion on underlying philosophical tensions within the early childhood field.
Resumo:
Advances in data mining have provided techniques for automatically discovering underlying knowledge and extracting useful information from large volumes of data. Data mining offers tools for quick discovery of relationships, patterns and knowledge in large complex databases. Application of data mining to manufacturing is relatively limited mainly because of complexity of manufacturing data. Growing self organizing map (GSOM) algorithm has been proven to be an efficient algorithm to analyze unsupervised DNA data. However, it produced unsatisfactory clustering when used on some large manufacturing data. In this paper a data mining methodology has been proposed using a GSOM tool which was developed using a modified GSOM algorithm. The proposed method is used to generate clusters for good and faulty products from a manufacturing dataset. The clustering quality (CQ) measure proposed in the paper is used to evaluate the performance of the cluster maps. The paper also proposed an automatic identification of variables to find the most probable causative factor(s) that discriminate between good and faulty product by quickly examining the historical manufacturing data. The proposed method offers the manufacturers to smoothen the production flow and improve the quality of the products. Simulation results on small and large manufacturing data show the effectiveness of the proposed method.
Resumo:
This paper presents a multiscale study using the coupled Meshless technique/Molecular Dynamics (M2) for exploring the deformation mechanism of mono-crystalline metal (focus on copper) under uniaxial tension. In M2, an advanced transition algorithm using transition particles is employed to ensure the compatibility of both displacements and their gradients, and an effective local quasi-continuum approach is also applied to obtain the equivalent continuum strain energy density based on the atomistic poentials and Cauchy-Born rule. The key parameters used in M2 are firstly investigated using a benchmark problem. Then M2 is applied to the multiscale simulation for a mono-crystalline copper bar. It has found that the mono-crystalline copper has very good elongation property, and the ultimate strength and Young's modulus are much higher than those obtained in macro-scale.
Resumo:
Hollow micro-sized H2(H2O)Nb2O6 spheres constructed by nanocrystallites have been successfully synthesized via a bubble-template assisted hydrothermal process. In the reaction process, H2O2 acts as a bubble generator and plays a key role in the formation of the hollow structure. An in situ bubble-template mechanism has been proposed for the possible formation of the hollow structure. The spherelike assemblies of these H2(H2O)Nb2O6 nanoparticles have been transformed into their corresponding pseudohexagonal phase Nb2O5 through a moderate annealing dehydration process without destroying the hierarchical structure. Optical properties of the as-prepared hollow spheres were investigated. It is exciting that the absorption edge of the hollow Nb2O5 microspheres shifts about 18 nm to the violet compared with bulk powders in the UV/vis spectra, indicating its superior optical properties.
Resumo:
Bridges are valuable assets of every nation. They deteriorate with age and often are subjected to additional loads or different load patterns than originally designed for. These changes in loads can cause localized distress and may result in bridge failure if not corrected in time. Early detection of damage and appropriate retrofitting will aid in preventing bridge failures. Large amounts of money are spent in bridge maintenance all around the world. A need exists for a reliable technology capable of monitoring the structural health of bridges, thereby ensuring they operate safely and efficiently during the whole intended lives. Monitoring of bridges has been traditionally done by means of visual inspection. Visual inspection alone is not capable of locating and identifying all signs of damage, hence a variety of structural health monitoring (SHM) techniques is used regularly nowadays to monitor performance and to assess condition of bridges for early damage detection. Acoustic emission (AE) is one technique that is finding an increasing use in SHM applications of bridges all around the world. The chapter starts with a brief introduction to structural health monitoring and techniques commonly used for monitoring purposes. Acoustic emission technique, wave nature of AE phenomenon, previous applications and limitations and challenges in the use as a SHM technique are also discussed. Scope of the project and work carried out will be explained, followed by some recommendations of work planned in future.
Resumo:
Three different methods of inclusion of current measurements by phasor measurement units (PMUs) in a power sysetm state estimator is investigated. A comprehensive formulation of the hybrid state estimator incorporating conventional, as well as PMU measurements, is presented for each of the three methods. The behaviour of the elements because of the current measurements in the measurement Jacobian matrix is examined for any possible ill-conditioning of the state estimator gain matrix. The performance of the state estimators are compared in terms of the convergence properties and the varian in the estimated states. The IEEE 14-bus and IEEE 300-bus systems are used as test beds for the study.
Resumo:
This report summarises the research undertaken that informed the Protocol, the process of development, and the first eighteen months of implementation. Particular chapters examine shopping centre use by young poeple, understanding conflict and opposition in the Centre, the Protocol development process, and the monitoring and review of the Protocol.
Resumo:
Many luxury heritage brands operate on the misconception that heritage is interchangeable with history rather than representative of the emotional response they originally developed in their customer. This idea of heritage as static history inhibits innovation, prevents dynamic renewal and impedes their ability to redefine, strengthen and position their brand in current and emerging marketplaces. This paper examines a number of heritage luxury brands that have successfully identified the original emotional responses they developed in their customers and, through innovative approaches in design, marketing, branding and distribution evoke these responses in contemporary consumers. Using heritage and innovation hand-in-hand, these brands have continued to grow and develop a vision of heritage that incorporates both historical and contemporary ideas to meet emerging customer needs. While what constitutes a ‘luxury’ item is constantly challenged in this era of accessible luxury products, up-scaling and aspirational spending, this paper sees consumers’ emotional needs as the key element in defining the concept of luxury. These emotional qualities consistently remain relevant due to their ability to enhance a positive sense of identity for the brand user. Luxury is about the ‘experience’ not just the product providing the consumer with a sense of enhanced status or identity through invoked feelings of exclusivity, authenticity, quality, uniqueness and culture. This paper will analyse luxury heritage brands that have successfully combined these emotional values with those of their ‘heritage’ to create an aura of authenticity and nostalgia that appeals to contemporary consumers. Like luxury, the line where clothing becomes fashion is blurred in the contemporary fashion industry; however, consumer emotion again plays an important role. For example, clothing becomes ‘fashion’ for consumers when it affects their self perception rather than fulfilling basic functions of shelter and protection. Successful luxury heritage brands can enhance consumers’ sense of self by involving them in the ‘experience’ and ‘personality’ of the brand so they see it as a reflection of their own exclusiveness, authentic uniqueness, belonging and cultural value. Innovation is a valuable tool for heritage luxury brands to successfully generate these desired emotional responses and meet the evolving needs of contemporary consumers. While traditionally fashion has been a monologue from brand to consumer, new technology has given consumers a voice to engage brands in a conversation to express their evolving needs, ideas and feedback. As a result, in this consumer-empowered era of information sharing, this paper defines innovation as the ability of heritage luxury brands to develop new design and branding strategies in response to this consumer feedback while retaining the emotional core values of their heritage. This paper analyses how luxury heritage brands can effectively position themselves in the contemporary marketplace by separating heritage from history to incorporate innovative strategies that will appeal to consumer needs of today and tomorrow.
Resumo:
Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. AE is one of the several non-destructive testing (NDT) techniques currently used for structural health monitoring (SHM) of civil, mechanical and aerospace structures. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. Despite these advantages, several challenges still exist in successful application of AE monitoring. Accurate localization of AE sources, discrimination between genuine AE sources and spurious noise sources and damage quantification for severity assessment are some of the important issues in AE testing and will be discussed in this paper. Various data analysis and processing approaches will be applied to manage those issues.
Resumo:
A Computational fluid dynamics (CFD) approach is used to model fluid flow in a journal bearing with three equi-spaced axial grooves and supplied with water from one end. Water is subjected to both velocity (Couette) & pressure induced (Poiseuille) flow. The working fluid passing through the bearing clearance generates driving force components that may increase the unstable vibration of the rotor. It is important to know the accurate rotor dynamic force component for predicting the instability of rotor bearing systems. In this paper a study has been made to obtain the stiffness and damping coefficients of 3 axial groove bearing using Perturbation technique.
Resumo:
The LiteSteel beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. The LSBs are commonly used as flexural members in buildings. However, the LSB flexural members are subjected to lateral distortional buckling, which reduces their member moment capacities. Unlike the commonly observed lateral torsional buckling of steel beams, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist, and cross sectional change due to web distortion. An experimental study including more than 50 lateral buckling tests was therefore conducted to investigate the behaviour and strength of LSB flexural members. It included the available 13 LSB sections with spans ranging from 1200 to 4000 mm. Lateral buckling tests based on a quarter point loading were conducted using a special test rig designed to simulate the required simply supported and loading conditions accurately. Experimental moment capacities were compared with the predictions from the design rules in the Australian cold-formed steel structures standard. The new design rules in the standard were able to predict the moment capacities more accurately than previous design rules. This paper presents the details of lateral distortional buckling tests, in particular the features of the lateral buckling test rig, the results and the comparisons. It also includes the results of detailed studies into the mechanical properties and residual stresses of LSBs.