943 resultados para Harmonic Oscillator
Resumo:
We show that self-localized ground states can be created in the spin-balanced gas of fermions with repulsion between the spin components, whose strength grows from the center to periphery, in combination with the harmonic-oscillator (HO) trapping potential acting in one or two transverse directions. We also consider the ground state in the noninteracting Fermi gas under the action of the spatially growing tightness of the one- or two-dimensional (1D or 2D) HO confinement. These settings are considered in the framework of the Thomas-Fermi-von Weizsäcker (TF-vW) density functional. It is found that the vW correction to the simple TF approximation (the gradient term) is nearly negligible in all situations. The properties of the ground state under the action of the 2D and 1D HO confinement with the tightness growing in the transverse directions are investigated too for the Bose-Einstein condensate with the self-repulsive nonlinearity. © 2013 American Physical Society.
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The one-dimensional Schrödinger equation with the singular harmonic oscillator is investigated. The Hermiticity of the operators related to observable physical quantities is used as a criterion to show that the attractive or repulsive singular oscillator exhibits an infinite number of acceptable solutions provided the parameter responsible for the singularity is greater than a certain critical value, in disagreement with the literature. The problem for the whole line exhibits a two-fold degeneracy in the case of the singular oscillator, and the intrusion of additional solutions in the case of a nonsingular oscillator. Additionally, it is shown that the solution of the singular oscillator can not be obtained from the nonsingular oscillator via perturbation theory.
Resumo:
The study of oscillatory phenomena is an important topic in several areas of knowledge. The understanding and the solution of many problems that scientists and engineers confront nowadays can be formulated, at least as an analogy, in terms of an oscillatory movement. The description of the motion of this nature has remarkable contributions to the mathematical and conceptual formation of the students and for solving daily problems in several areas. In this paper we propose a theoretical and experimental approach involving the phenomenon of harmonic oscillations in two dimensions. Lissajous curves were used as experimental demonstration of the resulting trajectories. These curves were obtained from relatively simple experimental apparatus, which is affordable in most teaching laboratories of physics.
Resumo:
The Schwinger quantum action principle is a dynamic characterization of the transformation functions and is based on the algebraic structure derived from the kinematic analysis of the measurement processes at the quantum level. As such, this variational principle, allows to derive the canonical commutation relations in a consistent way. Moreover, the dynamic pictures of Schrödinger, Heisenberg and a quantum Hamilton-Jacobi equation can be derived from it. We will implement this formalism by solving simple systems such as the free particle, the quantum harmonic oscillator and the quantum forced harmonic oscillator.
Resumo:
We discuss the one-sided Green's function, associated with an initial value problem and the two-sided Green's function related to a boundary value problem. We present a specific calculation associated with a differential equation with constant coefficients. For both problems, we also present the Laplace integral transform as another methodology to calculate these Green's functions and conclude which is the most convenient one. An incursion in the so-called fractional Green's function is also presented. As an example, we discuss the isotropic harmonic oscillator.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The main goal of this work is to investigate the effects of a nonlinear cubic term inserted in the Schrödinger equation for one-dimensional potentials studied in Quantum Mechanics textbooks. Being the main tool the numerical analysis in a large number of works, the analysis of this effect by this term in the potential itself, in order to work with an analytical solution, can be considered something new. For the harmonic oscillator potential, the analysis was made from a numerical method, comparing the result with the known results in the literature. In the case of the infinite well potential and the step potential, hoping to work with an analytical solution, by construction we started with the known wavefunction for the linear case noting the effects in the other physical quantities. The coupling of the physical quantities involved in this work has yielded, besides many complications in the calculations, a series of conditions on the existence and validity of the solutions in regard to the system possible configurations