9 resultados para Harmonic Oscillator
em CaltechTHESIS
Resumo:
Quantum mechanics places limits on the minimum energy of a harmonic oscillator via the ever-present "zero-point" fluctuations of the quantum ground state. Through squeezing, however, it is possible to decrease the noise of a single motional quadrature below the zero-point level as long as noise is added to the orthogonal quadrature. While squeezing below the quantum noise level was achieved decades ago with light, quantum squeezing of the motion of a mechanical resonator is a more difficult prospect due to the large thermal occupations of megahertz-frequency mechanical devices even at typical dilution refrigerator temperatures of ~ 10 mK.
Kronwald, Marquardt, and Clerk (2013) propose a method of squeezing a single quadrature of mechanical motion below the level of its zero-point fluctuations, even when the mechanics starts out with a large thermal occupation. The scheme operates under the framework of cavity optomechanics, where an optical or microwave cavity is coupled to the mechanics in order to control and read out the mechanical state. In the proposal, two pump tones are applied to the cavity, each detuned from the cavity resonance by the mechanical frequency. The pump tones establish and couple the mechanics to a squeezed reservoir, producing arbitrarily-large, steady-state squeezing of the mechanical motion. In this dissertation, I describe two experiments related to the implementation of this proposal in an electromechanical system. I also expand on the theory presented in Kronwald et. al. to include the effects of squeezing in the presence of classical microwave noise, and without assumptions of perfect alignment of the pump frequencies.
In the first experiment, we produce a squeezed thermal state using the method of Kronwald et. al.. We perform back-action evading measurements of the mechanical squeezed state in order to probe the noise in both quadratures of the mechanics. Using this method, we detect single-quadrature fluctuations at the level of 1.09 +/- 0.06 times the quantum zero-point motion.
In the second experiment, we measure the spectral noise of the microwave cavity in the presence of the squeezing tones and fit a full model to the spectrum in order to deduce a quadrature variance of 0.80 +/- 0.03 times the zero-point level. These measurements provide the first evidence of quantum squeezing of motion in a mechanical resonator.
Resumo:
We approach the problem of automatically modeling a mechanical system from data about its dynamics, using a method motivated by variational integrators. We write the discrete Lagrangian as a quadratic polynomial with varying coefficients, and then use the discrete Euler-Lagrange equations to numerically solve for the values of these coefficients near the data points. This method correctly modeled the Lagrangian of a simple harmonic oscillator and a simple pendulum, even with significant measurement noise added to the trajectories.
Resumo:
Part I: The mobilities of photo-generated electrons and holes in orthorhombic sulfur are determined by drift mobility techniques. At room temperature electron mobilities between 0.4 cm2/V-sec and 4.8 cm2/V-sec and hole mobilities of about 5.0 cm2/V-sec are reported. The temperature dependence of the electron mobility is attributed to a level of traps whose effective depth is about 0.12 eV. This value is further supported by both the voltage dependence of the space-charge-limited, D.C. photocurrents and the photocurrent versus photon energy measurements.
As the field is increased from 10 kV/cm to 30 kV/cm a second mechanism for electron transport becomes appreciable and eventually dominates. Evidence that this is due to impurity band conduction at an appreciably lower mobility (4.10-4 cm2/V-sec) is presented. No low mobility hole current could be detected. When fields exceeding 30 kV/cm for electron transport and 35 kV/cm for hole transport are applied, avalanche phenomena are observed. The results obtained are consistent with recent energy gap studies in sulfur.
The theory of the transport of photo-generated carriers is modified to include the case of appreciable thermos-regeneration from the traps in one transit time.
Part II: An explicit formula for the electric field E necessary to accelerate an electron to a steady-state velocity v in a polarizable crystal at arbitrary temperature is determined via two methods utilizing Feynman Path Integrals. No approximation is made regarding the magnitude of the velocity or the strength of the field. However, the actual electron-lattice Coulombic interaction is approximated by a distribution of harmonic oscillator potentials. One may be able to find the “best possible” distribution of oscillators using a variational principle, but we have not been able to find the expected criterion. However, our result is relatively insensitive to the actual distribution of oscillators used, and our E-v relationship exhibits the physical behavior expected for the polaron. Threshold fields for ejecting the electron for the polaron state are calculated for several substances using numerical results for a simple oscillator distribution.
Resumo:
Part I
Solutions of Schrödinger’s equation for system of two particles bound in various stationary one-dimensional potential wells and repelling each other with a Coulomb force are obtained by the method of finite differences. The general properties of such systems are worked out in detail for the case of two electrons in an infinite square well. For small well widths (1-10 a.u.) the energy levels lie above those of the noninteresting particle model by as much as a factor of 4, although excitation energies are only half again as great. The analytical form of the solutions is obtained and it is shown that every eigenstate is doubly degenerate due to the “pathological” nature of the one-dimensional Coulomb potential. This degeneracy is verified numerically by the finite-difference method. The properties of the square-well system are compared with those of the free-electron and hard-sphere models; perturbation and variational treatments are also carried out using the hard-sphere Hamiltonian as a zeroth-order approximation. The lowest several finite-difference eigenvalues converge from below with decreasing mesh size to energies below those of the “best” linear variational function consisting of hard-sphere eigenfunctions. The finite-difference solutions in general yield expectation values and matrix elements as accurate as those obtained using the “best” variational function.
The system of two electrons in a parabolic well is also treated by finite differences. In this system it is possible to separate the center-of-mass motion and hence to effect a considerable numerical simplification. It is shown that the pathological one-dimensional Coulomb potential gives rise to doubly degenerate eigenstates for the parabolic well in exactly the same manner as for the infinite square well.
Part II
A general method of treating inelastic collisions quantum mechanically is developed and applied to several one-dimensional models. The formalism is first developed for nonreactive “vibrational” excitations of a bound system by an incident free particle. It is then extended to treat simple exchange reactions of the form A + BC →AB + C. The method consists essentially of finding a set of linearly independent solutions of the Schrödinger equation such that each solution of the set satisfies a distinct, yet arbitrary boundary condition specified in the asymptotic region. These linearly independent solutions are then combined to form a total scattering wavefunction having the correct asymptotic form. The method of finite differences is used to determine the linearly independent functions.
The theory is applied to the impulsive collision of a free particle with a particle bound in (1) an infinite square well and (2) a parabolic well. Calculated transition probabilities agree well with previously obtained values.
Several models for the exchange reaction involving three identical particles are also treated: (1) infinite-square-well potential surface, in which all three particles interact as hard spheres and each two-particle subsystem (i.e. BC and AB) is bound by an attractive infinite-square-well potential; (2) truncated parabolic potential surface, in which the two-particle subsystems are bound by a harmonic oscillator potential which becomes infinite for interparticle separations greater than a certain value; (3) parabolic (untruncated) surface. Although there are no published values with which to compare our reaction probabilities, several independent checks on internal consistency indicate that the results are reliable.
Resumo:
In the field of mechanics, it is a long standing goal to measure quantum behavior in ever larger and more massive objects. It may now seem like an obvious conclusion, but until recently it was not clear whether a macroscopic mechanical resonator -- built up from nearly 1013 atoms -- could be fully described as an ideal quantum harmonic oscillator. With recent advances in the fields of opto- and electro-mechanics, such systems offer a unique advantage in probing the quantum noise properties of macroscopic electrical and mechanical devices, properties that ultimately stem from Heisenberg's uncertainty relations. Given the rapid progress in device capabilities, landmark results of quantum optics are now being extended into the regime of macroscopic mechanics.
The purpose of this dissertation is to describe three experiments -- motional sideband asymmetry, back-action evasion (BAE) detection, and mechanical squeezing -- that are directly related to the topic of measuring quantum noise with mechanical detection. These measurements all share three pertinent features: they explore quantum noise properties in a macroscopic electromechanical device driven by a minimum of two microwave drive tones, hence the title of this work: "Quantum electromechanics with two tone drive".
In the following, we will first introduce a quantum input-output framework that we use to model the electromechanical interaction and capture subtleties related to interpreting different microwave noise detection techniques. Next, we will discuss the fabrication and measurement details that we use to cool and probe these devices with coherent and incoherent microwave drive signals. Having developed our tools for signal modeling and detection, we explore the three-wave mixing interaction between the microwave and mechanical modes, whereby mechanical motion generates motional sidebands corresponding to up-down frequency conversions of microwave photons. Because of quantum vacuum noise, the rates of these processes are expected to be unequal. We will discuss the measurement and interpretation of this asymmetric motional noise in a electromechanical device cooled near the ground state of motion.
Next, we consider an overlapped two tone pump configuration that produces a time-modulated electromechanical interaction. By careful control of this drive field, we report a quantum non-demolition (QND) measurement of a single motional quadrature. Incorporating a second pair of drive tones, we directly measure the measurement back-action associated with both classical and quantum noise of the microwave cavity. Lastly, we slightly modify our drive scheme to generate quantum squeezing in a macroscopic mechanical resonator. Here, we will focus on data analysis techniques that we use to estimate the quadrature occupations. We incorporate Bayesian spectrum fitting and parameter estimation that serve as powerful tools for incorporating many known sources of measurement and fit error that are unavoidable in such work.
Resumo:
This thesis has two basic themes: the investigation of new experiments which can be used to test relativistic gravity, and the investigation of new technologies and new experimental techniques which can be applied to make gravitational wave astronomy a reality.
Advancing technology will soon make possible a new class of gravitation experiments: pure laboratory experiments with laboratory sources of non-Newtonian gravity and laboratory detectors. The key advance in techno1ogy is the development of resonant sensing systems with very low levels of dissipation. Chapter 1 considers three such systems (torque balances, dielectric monocrystals, and superconducting microwave resonators), and it proposes eight laboratory experiments which use these systems as detectors. For each experiment it describes the dominant sources of noise and the technology required.
The coupled electro-mechanical system consisting of a microwave cavity and its walls can serve as a gravitational radiation detector. A gravitational wave interacts with the walls, and the resulting motion induces transitions from a highly excited cavity mode to a nearly unexcited mode. Chapter 2 describes briefly a formalism for analyzing such a detector, and it proposes a particular design.
The monitoring of a quantum mechanical harmonic oscillator on which a classical force acts is important in a variety of high-precision experiments, such as the attempt to detect gravitational radiation. Chapter 3 reviews the standard techniques for monitoring the oscillator; and it introduces a new technique which, in principle, can determine the details of the force with arbitrary accuracy, despite the quantum properties of the oscillator.
The standard method for monitoring the oscillator is the "amplitude- and-phase" method (position or momentum transducer with output fed through a linear amplifier). The accuracy obtainable by this method is limited by the uncertainty principle. To do better requires a measurement of the type which Braginsky has called "quantum nondemolition." A well-known quantum nondemolition technique is "quantum counting," which can detect an arbitrarily weak force, but which cannot provide good accuracy in determining its precise time-dependence. Chapter 3 considers extensively a new type of quantum nondemolition measurement - a "back-action-evading" measurement of the real part X1 (or the imaginary part X2) of the oscillator's complex amplitude. In principle X1 can be measured arbitrarily quickly and arbitrarily accurately, and a sequence of such measurements can lead to an arbitrarily accurate monitoring of the classical force.
Chapter 3 describes explicit gedanken experiments which demonstrate that X1 can be measured arbitrarily quickly and arbitrarily accurately, it considers approximate back-action-evading measurements, and it develops a theory of quantum nondemolition measurement for arbitrary quantum mechanical systems.
In Rosen's "bimetric" theory of gravity the (local) speed of gravitational radiation vg is determined by the combined effects of cosmological boundary values and nearby concentrations of matter. It is possible for vg to be less than the speed of light. Chapter 4 shows that emission of gravitational radiation prevents particles of nonzero rest mass from exceeding the speed of gravitational radiation. Observations of relativistic particles place limits on vg and the cosmological boundary values today, and observations of synchrotron radiation from compact radio sources place limits on the cosmological boundary values in the past.
Resumo:
Hair cells from the bull frog's sacculus, a vestibular organ responding to substrate-borne vibration, possess electrically resonant membrane properties which maximize the sensitivity of each cell to a particular frequency of mechanical input. The electrical resonance of these cells and its underlying ionic basis were studied by applying gigohm-seal recording techniques to solitary hair cells enzymatically dissociated from the sacculus. The contribution of electrical resonance to frequency selectivity was assessed from microelectrode recordings from hair cells in an excised preparation of the sacculus.
Electrical resonance in the hair cell is demonstrated by damped membrane-potential oscillations in response to extrinsic current pulses applied through the recording pipette. This response is analyzed as that of a damped harmonic oscillator. Oscillation frequency rises with membrane depolarization, from 80-160 Hz at resting potential to asymptotic values of 200-250 Hz. The sharpness of electrical tuning, denoted by the electrical quality factor, Qe, is a bell-shaped function of membrane voltage, reaching a maximum value around eight at a membrane potential slightly positive to the resting potential.
In whole cells, three time-variant ionic currents are activated at voltages more positive than -60 to -50 mV; these are identified as a voltage-dependent, non-inactivating Ca current (Ica), a voltage-dependent, transient K current (Ia), and a Ca-dependent K current (Ic). The C channel is identified in excised, inside-out membrane patches on the basis of its large conductance (130-200 pS), its selective permeability to Kover Na or Cl, and its activation by internal Ca ions and membrane depolarization. Analysis of open- and closed-lifetime distributions suggests that the C channel can assume at least two open and three closed kinetic states.
Exposing hair cells to external solutions that inhibit the Ca or C conductances degrades the electrical resonance properties measured under current-clamp conditions, while blocking the A conductance has no significant effect, providing evidence that only the Ca and C conductances participate in the resonance mechanism. To test the sufficiency of these two conductances to account for electrical resonance, a mathematical model is developed that describes Ica, Ic, and intracellular Ca concentration during voltage-clamp steps. Ica activation is approximated by a third-order Hodgkin-Huxley kinetic scheme. Ca entering the cell is assumed to be confined to a small submembrane compartment which contains an excess of Ca buffer; Ca leaves this space with first-order kinetics. The Ca- and voltage-dependent activation of C channels is described by a five-state kinetic scheme suggested by the results of single-channel observations. Parameter values in the model are adjusted to fit the waveforms of Ica and Ic evoked by a series of voltage-clamp steps in a single cell. Having been thus constrained, the model correctly predicts the character of voltage oscillations produced by current-clamp steps, including the dependencies of oscillation frequency and Qe on membrane voltage. The model shows quantitatively how the Ca and C conductances interact, via changes in intracellular Ca concentration, to produce electrical resonance in a vertebrate hair cell.
Resumo:
Microwave noise emission at the harmonics of the electron cyclotron frequency from the magnetized plasma column of a Penning discharge is investigated experimentally. The harmonic emission spectrum is observed using oxygen gas in a variety of discharge configurations. It is found that grid stabilization of the plasma column has very little effect on the emission spectrum. Measurements of the shape and location of the harmonic emission lines are described in detail. On the basis of a microwave interferometer measurement of the electron density, it is concluded that the existence of a hybrid layer somewhere on the plasma column is a necessary condition for the observation of harmonic emission. The relaxation time and the cathode voltage dependence of the harmonic emission are investigated using a pulse modulation technique. It is found that the emission intensity increases rapidly with the magnitude of the cathode voltage and that the relaxation time decreases with increasing neutral gas pressure. High intensity nonharmonic radiation is observed and identified as resulting from a beam-plasma wave instability thereby eliminating the same instability as a possible source of the harmonic emission. It is found that the collective experimental results are in reasonable agreement with the single particle electrostatic radiation theory of Canobbio and Croci.
Resumo:
Absolute f-values for 7 transitions in the first spectra of 4 elements have been measured using the atomic beam absorption technique. The equivalent widths of the absorption lines are measured with a photoelectric scanner and the atomic beam density is determined by continuously weighing a part of it with a sensitive automatic microbalance. The complete theory is presented and corrections are calculated to cope with gas absorption by the deposit on the microbalance pan and atoms which do not stick to the pan. An additional correction for the failure of the assumption of effusive flow in the formation of the atomic beam at large densities has been measured experimentally.
The following f-values were measured:
Fe: fλ3720 = 0.0430 ± 8%
Cu: fλ3247 = 0.427 ± 4.5%, fλ3274 = 0.206 ± 4.7%, fλ2492 = 0.0037 ± 9%
Cd: fλ3261 = 0.00190 ± 7%, fλ2288 = 1.38 ± 12%
Au: fλ2428 = 0.283 ± 5.3%
Comparison with other accurately measured f-values, where they exist, shows agreement within experimental errors.