943 resultados para Gonadal Steroid Hormones
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The endocrine diseases, notably Cushing's disease, are of great importance from the morbid pictures that affect the canine species. Due to the imprecision of the standard tests, the HAC can be a diagnosis difficult to confirm. Often, the clinical manifestations and biochemical and hematological findings support the diagnosis of HAC, but endocrine tests are normal or inconclusive. The excessive production of ACTH may, in the adrenals, not only stimulate the increase of glucocorticoids, but also of sex hormones. In recent studies, the concentrations of sex hormones were used as parameters to check the adrenal gland function in animals with suspected Cushing's disease, suggesting that high serum concentrations of 17 hydroxyprogesterone (17OHP) and other sex steroid hormones would be the cause of the so called atypical hyperadrenocorticism
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), are essential for survival; they are involved in the processes of development, growth, and metabolism. In addition to hyperthyroidism or hypothyroidism, THs are involved in other diseases. The role of THs in the development and differentiation of mammary epithelium is well established; however, their specific role in the pathogenesis of breast cancer (BC) is controversial. Steroid hormones affect many human cancers and the abnormal responsiveness of the mammary epithelial cells to estradiol (E2) in particular is known to be an important cause for the development and progression of BC. The proliferative effect of T3 has been demonstrated in various types of cancer. In BC cell lines, T3 may foster the conditions for tumor proliferation and increase the effect of cell proliferation by E2; thus, T3 may play a role in the development and progression of BC. Studies show that T3 has effects similar to E2 in BC cell lines. Despite controversy regarding the relationship between thyroid disturbances and the incidence of BC, studies show that thyroid status may influence the development of tumor, proliferation and metastasis.
Resumo:
Seminal characteristics in teleost fish with an annual reproductive period, such as pacu (Piaractus mesopotamicus), may vary during the breeding season. The sperm formed before the beginning of the spawning period may be stored for a long time, causing damage to the cells. Therefore, re-stripping may be an important way to eliminate the old and allow for the collection of new spermatozoids. In this study, we analyzed the seminal characteristics of hormonally induced pacu at the beginning, middle and end of the breeding season, and we analyzed samples from re-stripped males (stripped first at the beginning, re-stripped in the middle, and re-stripped again at the end of the season) during two breeding seasons. The sperm density, ionic composition, pH, and osmolality were similar among the groups. The semen volume, seminal plasma protein concentration and incidence of morphologically anomalous sperm increased over time. In addition, some parameters that are associated with good-quality semen decreased, such as sperm motility, viability and DNA integrity. Moreover, we observed a positive association among motility, viability and DNA integrity for sperm with elevated 11-ketotestosterone, but there was no such association for fshb or lhb mRNA levels in the pituitary. The semen that was obtained earlier (at the beginning) or from re-stripped males exhibited better characteristics than the other samples collected. In conclusion, collecting semen from pacu at the end of breeding season should be avoided; it is preferable to strip early and then re-strip later in the season, and this approach may be used for diverse aquaculture purposes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: In the feline species, 80% to 93% of neoplasias in the mammary gland are malignant, being the majority carcinomas. Among them, there is the mammary squamous cell carcinoma, which amounts to a very rare neoplasm in the domestic cat, with considerable potential for malignancy. This study aimed to report a case of squamous cell mammary carcinoma in the feline species. Case: A female cat, mixed breed, ten years old, presented history of skin lesion. The cat had been spayed two years before, but with previous administration of contraceptives. At the physical examination, it was observed ulcer between the caudal abdominal mammary glands. The occurrence of skin or mammary neoplasia was conceived. The following complementary tests were requested: complete blood count, serum biochemical profile (renal and hepatic), chest radiographs, abdominal ultrasound, and incisional biopsy of the ulcerated region periphery, followed by classic histopathology. The lesion histopathology was compatible with squamous cell carcinoma of the mammary gland. Due to such a diagnosis, bilateral mastectomy was recommended. The material obtained during the surgical procedure was sent for anatomopathological analysis. Microscopically, surgical margins infiltration and a regional lymph node were verified. The owner was advised of the need for complementary therapies and medical monitoring of the cat. However, there was no return. It is noteworthy that the animal's physical and laboratory examinations showed no neoplasia in other regions, being the squamous cell carcinoma of the mammary gland considered primary. Discussion: The malignant mammary neoplasia genesis in feline species, in general, seems to be related to steroid hormones. The ovariectomized females are less likely to develop the disease when compared to intact cats, but there is no protective effect of surgery on those spayed after two years of age regarding the appearance of the neoplasia. Thus, at the time the reported patient was ovariectomized, this effect no longer occurred. The synthetic progestins regularly used to prevent estrus increase by three times the risk of breast carcinomas onset. In humans, there is no clear definition of the etiology and pathogenesis of mammary squamous cell carcinoma. However, it has been suggested its association with extreme forms of squamous metaplasia present in pre-existing mammary adenocarcinoma, besides cysts, chronic inflammations, abscesses and mammary gland adenofibromas. In a hypothetical way, this etiology could also be related to the feline mammary carcinoma, although, for the case at issue, the exogenous and endogenous hormonal influence should not be excluded. It has been reported that mammary squamous cell carcinomas in cats are classified in grades II and III (ie, moderately and poorly differentiated, respectively). Thus, they are considered tumors with more unfavorable prognosis. However, the monitoring of the clinical course, in order to evaluate possible recurrence of the neoplasia and metastases to distant sites, was not possible as the animal under discussion did not return. The squamous cell carcinoma is the most common skin tumor in feline species, despite the primary location in the mammary gland. It is, therefore, important to differentiate squamous cell carcinoma originated in the breast from histological types derived from skin. The description of this special and rare feline mammary carcinoma is important due to its particular characteristics and potential for malignancy.
Resumo:
Abstract Background Remodeling of the extracellular matrix is one of the most striking features observed in the uterus during the estrous cycle and after hormone replacement. Versican (VER) is a hyaluronan-binding proteoglycan that undergoes RNA alternative splicing, generating four distinct isoforms. This study analyzed the synthesis and distribution of VER in mouse uterine tissues during the estrous cycle, in ovariectomized (OVX) animals and after 17beta-estradiol (E2) and medroxyprogesterone (MPA) treatments, either alone or in combination. Methods Uteri from mice in all phases of the estrous cycle, and animals subjected to ovariectomy and hormone replacement were collected for immunoperoxidase staining for versican, as well as PCR and quantitative Real Time PCR. Results In diestrus and proestrus, VER was exclusively expressed in the endometrial stroma. In estrus and metaestrus, VER was present in both endometrial stroma and myometrium. In OVX mice, VER immunoreaction was abolished in all uterine tissues. VER expression was restored by E2, MPA and E2+MPA treatments. Real Time PCR analysis showed that VER expression increases considerably in the MPA-treated group. Analysis of mRNA identified isoforms V0, V1 and V3 in the mouse uterus. Conclusion These results show that the expression of versican in uterine tissues is modulated by ovarian steroid hormones, in a tissue-specific manner. VER is induced in the myometrium exclusively by E2, whereas MPA induces VER deposition only in the endometrial stroma.
Resumo:
Background: In the feline species, 80% to 93% of neoplasias in the mammary gland are malignant, being the majority carcinomas. Among them, there is the mammary squamous cell carcinoma, which amounts to a very rare neoplasm in the domestic cat, with considerable potential for malignancy. This study aimed to report a case of squamous cell mammary carcinoma in the feline species. Case: A female cat, mixed breed, ten years old, presented history of skin lesion. The cat had been spayed two years before, but with previous administration of contraceptives. At the physical examination, it was observed ulcer between the caudal abdominal mammary glands. The occurrence of skin or mammary neoplasia was conceived. The following complementary tests were requested: complete blood count, serum biochemical profi le (renal and hepatic), chest radiographs, abdominal ultrasound, and incisional biopsy of the ulcerated region periphery, followed by classic histopathology. The lesion histopathology was compatible with squamous cell carcinoma of the mammary gland. Due to such a diagnosis, bilateral mastectomy was recommended. The material obtained during the surgical procedure was sent for anatomopathological analysis. Microscopically, surgical margins infi ltration and a regional lymph node were verifi ed. The owner was advised of the need for complementary therapies and medical monitoring of the cat. However, there was no return. It is noteworthy that the animal’s physical and laboratory examinations showed no neoplasia in other regions, being the squamous cell carcinoma of the mammary gland considered primary. Discussion: The malignant mammary neoplasia genesis in feline species, in general, seems to be related to steroid hormones. The ovariectomized females are less likely to develop the disease when compared to intact cats, but there is no protective effect of surgery on those spayed after two years of age regarding the appearance of the neoplasia. Thus, at the time the reported patient was ovariectomized, this effect no longer occurred. The synthetic progestins regularly used to prevent estrus increase by three times the risk of breast carcinomas onset. In humans, there is no clear defi nition of the etiology and pathogenesis of mammary squamous cell carcinoma. However, it has been suggested its association with extreme forms of squamous metaplasia present in pre-existing mammary adenocarcinoma, besides cysts, chronic infl ammations, abscesses and mammary gland adenofi bromas. In a hypothetical way, this etiology could also be related to the feline mammary carcinoma, although, for the case at issue, the exogenous and endogenous hormonal infl uence should not be excluded. It has been reported that mammary squamous cell carcinomas in cats are classifi ed in grades II and III (ie, moderately and poorly differentiated, respectively). Thus, they are considered tumors with more unfavorable prognosis. However, the monitoring of the clinical course, in order to evaluate possible recurrence of the neoplasia and metastases to distant sites, was not possible as the animal under discussion did not return. The squamous cell carcinoma is the most common skin tumor in feline species, despite the primary location in the mammary gland. It is, therefore, important to differentiate squamous cell carcinoma originated in the breast from histological types derived from skin. The description of this special and rare feline mammary carcinoma is important due to its particular characteristics and potential for malignancy.
Resumo:
We previously showed that short-term hypo- and hyperthyroidism induce changes in neuropeptide glutamic-acid-isoleucine-amide (NEI) concentrations in discrete brain areas in male rats. To investigate the possible effects of hypo- and hyperthyroidism on NEI concentrations mainly in hypothalamic areas related to reproduction and behavior, female rats were sacrificed at different days of the estrous cycle. Circulating luteinizing hormone (LH), estradiol and progesterone concentrations were measured in control, hypothyroid (hypoT, treated with PTU during 7-9 days) and hyperthyroid (hyperT, l-T4 during 4-7 days) animals. Both treatments blunted the LH surge. Hypo- and hyperthyroidism increased estradiol concentrations during proestrus afternoon (P-PM), although hypoT rats showed lower values compared to control during proestrus morning (P-AM). Progesterone levels were higher in all groups at P-PM and in the hyperT during diestrus morning (D2). NEI concentrations were lower in hypoT rats during the estrous cycle except in estrus (E) in the peduncular part of the lateral hypothalamus (PLH). They were also reduced by both treatments in the perifornical part of the lateral hypothalamus (PeFLH) during P-PM. Hypothyroidism led to higher NEI concentrations during P-PM in the organum vasculosum of the lamina terminalis and anteroventral periventricular nucleus (OVLT+AVPV). The present results indicate that NEI concentration is regulated in a complex manner by hypo- and hyperthyroidism in the different areas studied, suggesting a correlation between NEI values and the variations of gonadal steroid levels during estrous cycle. These changes could be, in part, responsible for the alterations observed in the hypothalamic-pituitary-gonadal axis in these pathologies.
Resumo:
Industrial and domestic sewage effluents have been found to cause reproductive disorders in wild fish, often as a result of the interference of compounds in the effluents with the endocrine system. This thesis describes laboratory-based exposure experiments and a field survey that were conducted with juveniles of the three-spined stickleback, Gasterosteus aculeatus. This small teleost is a common fish in Swedish coastal waters and was chosen as an alternative to non-native test species commonly used in endocrine disruption studies, which allows the comparison of field data with results from laboratory experiments. The aim of this thesis was to elucidate 1) if genetic sex determination and differentiation can be disturbed by natural and synthetic steroid hormones and 2) whether this provides an endpoint for the detection of endocrine disruption, 3) to evaluate the applicability of specific estrogen- and androgen-inducible marker proteins in juvenile three-spined sticklebacks, 4) to investigate whether estrogenic and/or androgenic endocrine disrupting activity can be detected in effluents from Swedish pulp mills and domestic sewage treatment plants and 5) whether such activity can be detected in coastal waters receiving these effluents. Laboratory exposure experiments found juvenile three-spined sticklebacks to be sensitive to water-borne estrogenic and androgenic steroid substances. Intersex – the co-occurrence of ovarian and testicular tissue in gonads – was induced by 17β-estradiol (E2), 17α-ethinylestradiol (EE2), 17α-methyltestosterone (MT) and 5α-dihydrotestosterone (DHT). The first two weeks after hatching was the phase of highest sensitivity. MT was ambivalent by simultaneously eliciting masculinizing and feminizing effects. When applying a DNA-based method for genetic sex identification, it was found that application of MT only during the first two weeks after hatching caused total and apparently irreversible development of testis in genetic females. E2 caused gonad type reversal from male to female. E2 and EE2 induced vitellogenin - the estrogen-responsive yolk precursor protein, while DHT and MT induced spiggin – the androgen-responsive glue protein of the stickleback. None of the effluents from two pulp mills and two domestic sewage treatment plants had any estrogenic or androgenic activity. Juvenile three-spined sticklebacks were collected during four subsequent summers at the Swedish Baltic Sea coast in recipients of effluents from pulp mills and a domestic sewage treatment plant as well as remote reference sites. No sings of endocrine disruption were observed at any site, when studying gonad development or marker proteins, except for a deviation of sex ratios at a reference site. The three-spined stickleback – with focus on the juvenile stage – was found to be a sensitive species suitable for the study of estrogenic and androgenic endocrine disruption.
Resumo:
[ES]La comunidad científica internacional ha mostrado su preocupación en las últimas décadas sobre la presencia de hormonas esteroideas en el medio ambiente, las cuales han sido catalogadas como “compuestos disruptores endocrinos” (EDCs). Las hormonas pueden llegar al medio a través de diferentes vías, siendo la fuente principal la descarga al medio de los efluentes de las estaciones depuradoras de aguas residuales (EDARs), debido a la eliminación incompleta de estos compuestos que se produce en ellas. Las concentraciones de hormonas presentes en el medio acuático suelen ser del orden de ng·L-1, por lo que se necesitan metodologías analíticas sensibles y selectivas para su determinación
Resumo:
Transcription is controlled by promoter-selective transcriptional factors (TFs), which bind to cis-regulatory enhancers elements, termed hormone response elements (HREs), in a specific subset of genes. Regulation by these factors involves either the recruitment of coactivators or corepressors and direct interaction with the basal transcriptional machinery (1). Hormone-activated nuclear receptors (NRs) are well characterized transcriptional factors (2) that bind to the promoters of their target genes and recruit primary and secondary coactivator proteins which possess many enzymatic activities required for gene expression (1,3,4). In the present study, using single-cell high-resolution fluorescent microscopy and high throughput microscopy (HTM) coupled to computational imaging analysis, we investigated transcriptional regulation controlled by the estrogen receptor alpha (ERalpha), in terms of large scale chromatin remodeling and interaction with the associated coactivator SRC-3 (Steroid Receptor Coactivator-3), a member of p160 family (28) primary coactivators. ERalpha is a steroid-dependent transcriptional factor (16) that belongs to the NRs superfamily (2,3) and, in response to the hormone 17-ß estradiol (E2), regulates transcription of distinct target genes involved in development, puberty, and homeostasis (8,16). ERalpha spends most of its lifetime in the nucleus and undergoes a rapid (within minutes) intranuclear redistribution following the addition of either agonist or antagonist (17,18,19). We designed a HeLa cell line (PRL-HeLa), engineered with a chromosomeintegrated reporter gene array (PRL-array) containing multicopy hormone response-binding elements for ERalpha that are derived from the physiological enhancer/promoter region of the prolactin gene. Following GFP-ER transfection of PRL-HeLa cells, we were able to observe in situ ligand dependent (i) recruitment to the array of the receptor and associated coregulators, (ii) chromatin remodeling, and (iii) direct transcriptional readout of the reporter gene. Addition of E2 causes a visible opening (decondensation) of the PRL-array, colocalization of RNA Polymerase II, and transcriptional readout of the reporter gene, detected by mRNA FISH. On the contrary, when cells were treated with an ERalpha antagonist (Tamoxifen or ICI), a dramatic condensation of the PRL-array was observed, displacement of RNA Polymerase II, and complete decreasing in the transcriptional FISH signal. All p160 family coactivators (28) colocalize with ERalpha at the PRL-array. Steroid Receptor Coactivator-3 (SRC-3/AIB1/ACTR/pCIP/RAC3/TRAM1) is a p160 family member and a known oncogenic protein (4,34). SRC-3 is regulated by a variety of posttranslational modifications, including methylation, phosphorylation, acetylation, ubiquitination and sumoylation (4,35). These events have been shown to be important for its interaction with other coactivator proteins and NRs and for its oncogenic potential (37,39). A number of extracellular signaling molecules, like steroid hormones, growth factors and cytokines, induce SRC-3 phosphorylation (40). These actions are mediated by a wide range of kinases, including extracellular-regulated kinase 1 and 2 (ERK1-2), c-Jun N-terminal kinase, p38 MAPK, and IkB kinases (IKKs) (41,42,43). Here, we report SRC-3 to be a nucleocytoplasmic shuttling protein, whose cellular localization is regulated by phosphorylation and interaction with ERalpha. Using a combination of high throughput and fluorescence microscopy, we show that both chemical inhibition (with U0126) and siRNA downregulation of the MAP/ERK1/2 kinase (MEK1/2) pathway induce a cytoplasmic shift in SRC-3 localization, whereas stimulation by EGF signaling enhances its nuclear localization by inducing phosphorylation at T24, S857, and S860, known partecipants in the regulation of SRC-3 activity (39). Accordingly, the cytoplasmic localization of a non-phosphorylatable SRC-3 mutant further supports these results. In the presence of ERalpha, U0126 also dramatically reduces: hormone-dependent colocalization of ERalpha and SRC-3 in the nucleus; formation of ER-SRC-3 coimmunoprecipitation complex in cell lysates; localization of SRC-3 at the ER-targeted prolactin promoter array (PRL-array) and transcriptional activity. Finally, we show that SRC-3 can also function as a cotransporter, facilitating the nuclear-cytoplasmic shuttling of estrogen receptor. While a wealth of studies have revealed the molecular functions of NRs and coregulators, there is a paucity of data on how these functions are spatiotemporally organized in the cellular context. Technically and conceptually, our findings have a new impact upon evaluating gene transcriptional control and mechanisms of action of gene regulators.