950 resultados para Fractional Helmholtz Equation
Resumo:
Neste trabalho são analisados os quatro modos de plasmon, ligados simétrico (Sb) e assimétrico (ab), fuga pelo núcleo (ln) e fuga pela cobertura (lc), que se propagam em uma fibra óptica fracamente guiada envolta por um filme metálico. No filme metálico é depositada uma camada dielétrica extra e acima desta, uma outra denominada cobertura. A análise será desenvolvida para filmes metálicos de prata, paládio e ouro. Esta estrutura é muito útil na confecção de sensores ópticos.
Resumo:
Neste trabalho, é feita a análise dos modos de plasmon que se propagam em um filme metálico que cobre uma fibra óptica generalizada. Os modos de plasmon estudados são: Fuga pela Cobertura (lcv), Ligado Simétrico (Sb), Fuga pelo Núcleo (lcr) e Ligado Assimétrico (ab). Os filmes metálicos, para efeito de comparação, utilizados neste trabalho, são: a prata, o ouro e o paládio. Desenvolveu-se um modelo matemático do fenômeno eletromagnético e um software, que gerou um banco de dados que facilitasse a análise de estruturas, com diversas combinações de parâmetros. Com o banco de dados, foram obtidos diversos gráficos, que permitiram: analisar os modos de plasmon, verificar a atenuação das ondas e o comportamento do campo eletromagnético em cada região da estrutura. As confrontações entre as estruturas com filmes de: prata, ouro e paládio, permitiram concluir que aquelas elaboradas com os filmes de prata e de ouro são as que apresentam menores perdas, portanto, as recomendadas na confecção de sensores. Como a prata é mais acessível que o ouro, aconselha-se a sua utilização. A análise e os resultados deste trabalho são originais na literatura especializada.
Resumo:
A evolução nos sistemas digitais de comunicação está intrinsicamente relacionada ao desenvolvimento da tecnologia de fibras ópticas. Desde a sua criação, na década de 60, inúmeras pesquisas vem sendo realizadas com o intuito de aumentar a capacidade de informação transmitida, por meio da redução da atenuação, controle da dispersão cromática e eliminação das não-linearidades. Neste contexto, as Fibras de Bragg surgem como uma estrutura de grande potencialidade para se minimizar tais inconvenientes. As fibras de Bragg possuem um mecanismo de operação diferente em relação às fibras tradicionais de suportar os modos confinados. Nelas, o núcleo possui um baixo índice de refração, e a casca é constituída por anéis dielétricos de diferentes índices de refração, alocados alternadamente. Para uma fibra de Bragg com núcleo oco, como a considerada neste trabalho, há perdas decorrentes dos modos de fuga. Portanto, a análise da dispersão destas estruturas se situa no plano complexo, tornando-a muito difícil. Esta dissertação será fundamentada em uma estratégia imprescindível à análise dos modos transversais TE0m, TM0m e dos híbridos. Os resultados encontrados são validados confrontando-os com os obtidos na literatura. O trabalho discutirá as perdas e dispersões dos modos citados, e os resultados obtidos poderão nortear as pesquisas das fibras de Bragg.
Resumo:
The problem to be examined here is the fluctuating pressure distribution along the open cavity of the sun-roof at the top of a car compartment due to gusts passing over the sun-roof. The aim of this test is to investigate the capability of a typical commercial CFD package, PHOENICS, in recognising pressure fluctuations occurring in an important automotive industrial problem. In particular to examine the accuracy of transporting pulsatory gusts traveling along the main flow through the use of finite volume methods with higher order schemes in the numercial solutins of the unsteady compressible Navier-Stokes equations. The Helmholtz equation is used to solve the sound distribution inside the car compartment, resulting from the externally induced fluctuations.
Resumo:
A simple plane wave solution of the Schrodinger-Helmholtz equation is a quantum eigenfunction obeying both energy and linear momentum correspondence principles. Inclusion of the outgoing wave with scattering amplitude f asymptotic development of the plane wave, we show that there is a problem with angular momentum when we consider forward scattering at the point of closest approach and at large impact parameter given semiclassically by (l + 1/2)/k where l is the azimuthal quantum number and may be large (J. Leech et al., Phys. Rev. Lett. 88. 257901 (2002)). The problem is resolved via non- uniform, non-standard analysis involving the Heaviside step function, unifying classical, semiclassical and quantum mechanics, and the treatment is extended to the case of pure Coulomb scattering.
Resumo:
New mathematical methods to analytically investigate linear acoustic radiation and scattering from cylindrical bodies and transducer arrays are presented. Three problems of interest involving cylinders in an infinite fluid are studied. In all the three problems, the Helmholtz equation is used to model propagation through the fluid and the beam patterns of arrays of transducers are studied. In the first problem, a method is presented to determine the omni-directional and directional far-field pressures radiated by a cylindrical transducer array in an infinite rigid cylindrical baffle. The solution to the Helmholtz equation and the displacement continuity condition at the interface between the array and the surrounding water are used to determine the pressure. The displacement of the surface of each transducer is in the direction of the normal to the array and is assumed to be uniform. Expressions are derived for the pressure radiated by a sector of the array vibrating in-phase, the entire array vibrating in-phase, and a sector of the array phase-shaded to simulate radiation from a rectangular piston. It is shown that the uniform displacement required for generating a source level of 220 dB ref. μPa @ 1m that is omni directional in the azimuthal plane is in the order of 1 micron for typical arrays. Numerical results are presented to show that there is only a small difference between the on-axis pressures radiated by phased cylindrical arrays and planar arrays. The problem is of interest because cylindrical arrays of projectors are often used to search for underwater objects. In the second problem, the errors, when using data-independent, classical, energy and split beam correlation methods, in finding the direction of arrival (DOA) of a plane acoustic wave, caused by the presence of a solid circular elastic cylindrical stiffener near a linear array of hydrophones, are investigated. Scattering from the effectively infinite cylinder is modeled using the exact axisymmetric equations of motion and the total pressures at the hydrophone locations are computed. The effect of the radius of the cylinder, a, the distance between the cylinder and the array, b, the number of hydrophones in the array, 2H, and the angle of incidence of the wave, α, on the error in finding the DOA are illustrated using numerical results. For an array that is about 30 times the wavelength and for small angles of incidence (α<10), the error in finding the DOA using the energy method is less than that using the split beam correlation method with beam steered to α; and in some cases, the error increases when b increases; and the errors in finding the DOA using the energy method and the split beam correlation method with beam steered to α vary approximately as a7 / 4 . The problem is of interest because elastic stiffeners – in nearly acoustically transparent sonar domes that are used to protect arrays of transducers – scatter waves that are incident on it and cause an error in the estimated direction of arrival of the wave. In the third problem, a high-frequency ray-acoustics method is presented and used to determine the interior pressure field when a plane wave is normally incident on a fluid cylinder embedded in another infinite fluid. The pressure field is determined by using geometrical and physical acoustics. The interior pressure is expressed as the sum of the pressures due to all rays that pass through a point. Numerical results are presented for ka = 20 to 100 where k is the acoustic wavenumber of the exterior fluid and a is the radius of the cylinder. The results are in good agreement with those obtained using field theory. The directional responses, to the plane wave, of sectors of a circular array of uniformly distributed hydrophones in the embedded cylinder are then computed. The sectors are used to simulate linear arrays with uniformly distributed normals by using delays. The directional responses are compared with the output from an array in an infinite homogenous fluid. These outputs are of interest as they are used to determine the direction of arrival of the plane wave. Numerical results are presented for a circular array with 32 hydrophones and 12 hydrophones in each sector. The problem is of interest because arrays of hydrophones are housed inside sonar domes and acoustic plane waves from distant sources are scattered by the dome filled with fresh water and cause deterioration in the performance of the array.
Resumo:
The no response test is a new scheme in inverse problems for partial differential equations which was recently proposed in [D. R. Luke and R. Potthast, SIAM J. Appl. Math., 63 (2003), pp. 1292–1312] in the framework of inverse acoustic scattering problems. The main idea of the scheme is to construct special probing waves which are small on some test domain. Then the response for these waves is constructed. If the response is small, the unknown object is assumed to be a subset of the test domain. The response is constructed from one, several, or many particular solutions of the problem under consideration. In this paper, we investigate the convergence of the no response test for the reconstruction information about inclusions D from the Cauchy values of solutions to the Helmholtz equation on an outer surface $\partial\Omega$ with $\overline{D} \subset \Omega$. We show that the one‐wave no response test provides a criterion to test the analytic extensibility of a field. In particular, we investigate the construction of approximations for the set of singular points $N(u)$ of the total fields u from one given pair of Cauchy data. Thus, the no response test solves a particular version of the classical Cauchy problem. Also, if an infinite number of fields is given, we prove that a multifield version of the no response test reconstructs the unknown inclusion D. This is the first convergence analysis which could be achieved for the no response test.
Resumo:
In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity.
Resumo:
For a nonlocally perturbed half- space we consider the scattering of time-harmonic acoustic waves. A second kind boundary integral equation formulation is proposed for the sound-soft case, based on a standard ansatz as a combined single-and double-layer potential but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half- space Green's function. Due to the unboundedness of the surface, the integral operators are noncompact. In contrast to the two-dimensional case, the integral operators are also strongly singular, due to the slow decay at infinity of the fundamental solution of the three-dimensional Helmholtz equation. In the case when the surface is sufficiently smooth ( Lyapunov) we show that the integral operators are nevertheless bounded as operators on L-2(Gamma) and on L-2(Gamma G) boolean AND BC(Gamma) and that the operators depend continuously in norm on the wave number and on G. We further show that for mild roughness, i.e., a surface G which does not differ too much from a plane, the boundary integral equation is uniquely solvable in the space L-2(Gamma) boolean AND BC(Gamma) and the scattering problem has a unique solution which satisfies a limiting absorption principle in the case of real wave number.
Resumo:
In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree $\nu$) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval $[a,b]$, which only requires the discretization of $[a,b]$, we show theoretically and experimentally that the $L_2$ error in computing the acoustic field on $[a,b]$ is ${\cal O}(\log^{\nu+3/2}|k(b-a)| M^{-(\nu+1)})$, where $M$ is the number of degrees of freedom and $k$ is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems.
Resumo:
In this paper we are mainly concerned with the development of efficient computer models capable of accurately predicting the propagation of low-to-middle frequency sound in the sea, in axially symmetric (2D) and in fully 3D environments. The major physical features of the problem, i.e. a variable bottom topography, elastic properties of the subbottom structure, volume attenuation and other range inhomogeneities are efficiently treated. The computer models presented are based on normal mode solutions of the Helmholtz equation on the one hand, and on various types of numerical schemes for parabolic approximations of the Helmholtz equation on the other. A new coupled mode code is introduced to model sound propagation in range-dependent ocean environments with variable bottom topography, where the effects of an elastic bottom, of volume attenuation, surface and bottom roughness are taken into account. New computer models based on finite difference and finite element techniques for the numerical solution of parabolic approximations are also presented. They include an efficient modeling of the bottom influence via impedance boundary conditions, they cover wide angle propagation, elastic bottom effects, variable bottom topography and reverberation effects. All the models are validated on several benchmark problems and versus experimental data. Results thus obtained were compared with analogous results from standard codes in the literature.
Resumo:
In recent years nonpolynomial finite element methods have received increasing attention for the efficient solution of wave problems. As with their close cousin the method of particular solutions, high efficiency comes from using solutions to the Helmholtz equation as basis functions. We present and analyze such a method for the scattering of two-dimensional scalar waves from a polygonal domain that achieves exponential convergence purely by increasing the number of basis functions in each element. Key ingredients are the use of basis functions that capture the singularities at corners and the representation of the scattered field towards infinity by a combination of fundamental solutions. The solution is obtained by minimizing a least-squares functional, which we discretize in such a way that a matrix least-squares problem is obtained. We give computable exponential bounds on the rate of convergence of the least-squares functional that are in very good agreement with the observed numerical convergence. Challenging numerical examples, including a nonconvex polygon with several corner singularities, and a cavity domain, are solved to around 10 digits of accuracy with a few seconds of CPU time. The examples are implemented concisely with MPSpack, a MATLAB toolbox for wave computations with nonpolynomial basis functions, developed by the authors. A code example is included.
Resumo:
We consider the problem of scattering of time harmonic acoustic waves by an unbounded sound soft surface which is assumed to lie within a finite distance of some plane. The paper is concerned with the study of an equivalent variational formulation of this problem set in a scale of weighted Sobolev spaces. We prove well-posedness of this variational formulation in an energy space with weights which extends previous results in the unweighted setting [S. Chandler-Wilde and P. Monk, SIAM J. Math. Anal., 37 (2005), pp. 598–618] to more general inhomogeneous terms in the Helmholtz equation. In particular, in the two-dimensional case, our approach covers the problem of plane wave incidence, whereas in the three-dimensional case, incident spherical and cylindrical waves can be treated. As a further application of our results, we analyze a finite section type approximation, whereby the variational problem posed on an infinite layer is approximated by a variational problem on a bounded region.
Resumo:
In this paper, we extend to the time-harmonic Maxwell equations the p-version analysis technique developed in [R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), 264-284] for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem. While error estimates in a mesh-skeleton norm are derived parallel to the Helmholtz case, the derivation of estimates in a mesh-independent norm requires new twists in the duality argument. The particular case where the local Trefftz approximation spaces are built of vector-valued plane wave functions is considered, and convergence rates are derived.
Resumo:
In this article we describe recent progress on the design, analysis and implementation of hybrid numerical-asymptotic boundary integral methods for boundary value problems for the Helmholtz equation that model time harmonic acoustic wave scattering in domains exterior to impenetrable obstacles. These hybrid methods combine conventional piecewise polynomial approximations with high-frequency asymptotics to build basis functions suitable for representing the oscillatory solutions. They have the potential to solve scattering problems accurately in a computation time that is (almost) independent of frequency and this has been realized for many model problems. The design and analysis of this class of methods requires new results on the analysis and numerical analysis of highly oscillatory boundary integral operators and on the high-frequency asymptotics of scattering problems. The implementation requires the development of appropriate quadrature rules for highly oscillatory integrals. This article contains a historical account of the development of this currently very active field, a detailed account of recent progress and, in addition, a number of original research results on the design, analysis and implementation of these methods.