A wavenumber independent boundary element method for an acoustic scattering problem
Data(s) |
2006
|
---|---|
Resumo |
In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity. |
Formato |
text |
Identificador |
http://centaur.reading.ac.uk/4902/1/431931.pdf Langdon, S. <http://centaur.reading.ac.uk/view/creators/90000780.html> and Chandler-Wilde, S. N. <http://centaur.reading.ac.uk/view/creators/90000890.html> (2006) A wavenumber independent boundary element method for an acoustic scattering problem. SIAM Journal on Numerical Analysis (SINUM), 43 (6). pp. 2450-2477. ISSN 0036-1429 |
Idioma(s) |
en |
Publicador |
Society for Industrial and Applied Mathematics |
Relação |
http://centaur.reading.ac.uk/4902/ creatorInternal Langdon, S. creatorInternal Chandler-Wilde, S. N. |
Palavras-Chave | #510 Mathematics |
Tipo |
Article PeerReviewed |