Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations
Data(s) |
01/01/2013
|
---|---|
Resumo |
In this paper, we extend to the time-harmonic Maxwell equations the p-version analysis technique developed in [R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version, SIAM J. Numer. Anal., 49 (2011), 264-284] for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem. While error estimates in a mesh-skeleton norm are derived parallel to the Helmholtz case, the derivation of estimates in a mesh-independent norm requires new twists in the duality argument. The particular case where the local Trefftz approximation spaces are built of vector-valued plane wave functions is considered, and convergence rates are derived. |
Formato |
text |
Identificador |
http://centaur.reading.ac.uk/28026/1/HiptmairMoiolaPerugia---MathCompPostPrint.pdf Hiptmair, R., Moiola, A. <http://centaur.reading.ac.uk/view/creators/90005242.html> and Perugia, I. (2013) Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Mathematics of Computation, 82 (281). pp. 247-268. ISSN 1088-6842 doi: 10.1090/S0025-5718-2012-02627-5 <http://dx.doi.org/10.1090/S0025-5718-2012-02627-5 > |
Idioma(s) |
en |
Publicador |
American Mathematical Society |
Relação |
http://centaur.reading.ac.uk/28026/ creatorInternal Moiola, Andrea http://www.ams.org/journals/mcom/0000-000-00/S0025-5718-2012-02627-5/ 10.1090/S0025-5718-2012-02627-5 |
Tipo |
Article PeerReviewed |