979 resultados para Fire resistant materials
Resumo:
Fire resistance of cold-formed light gauge steel frame (LSF) wall systems is enhanced by lining them with single or multiple layers of wall boards with varying thermal properties. These wall boards are gypsum plasterboards or Magnesium Oxide (MgO) boards produced by different manufacturers. Thermal properties of these boards appear to show considerable variations and this can lead to varying fire resistance levels (FRL) for their wall systems. Currently FRLs of wall systems are determined using full scale fire tests, but they are time consuming and expensive. Recent research studies on the fire performance of LSF wall systems have used finite element studies to overcome this problem, but they were developed based on 1-D and 2-D finite element platform capable of performing either heat transfer or structural analysis separately. Hence in this research a 3-D finite element model was developed first for LSF walls lined with gypsum plasterboard and cavity insulation materials. Accurate thermal properties of these boards are essential for finite element modelling, and thus they were measured at both ambient and elevated temperatures. This experimental study included specific heat, relative density and thermal conductivity of boards. The developed 3-D finite element model was then validated using the available fire tests results of LSF walls lined with gypsum plasterboard, and is being used to investigate the fire performance of different LSF wall configurations. The tested MgO board exhibited significant variations in their thermal properties in comparison to gypsum plasterboards with about 50% loss of its initial mass at about 500 ºC compared to 16% for gypsum plasterboards. Hence the FRL of MgO board lined LSF wall systems is likely to be significantly reduced. This paper presents the details of this research study on the fire performance of LSF wall systems lined with gypsum plasterboard and MgO board including the developed 3-D finite element models, thermal property tests and the results.
Resumo:
The mechanism of fire retardant action of mono- and diammonium phosphates on polystyrene has been investigated. Ignition delay and mass burning rate studies reveal that the phosphates bring down both parameters considerably though to different extents. This has been adequately explained on the basis of the existing combustion models and physicochemical behavior of the material. Similar to their action on cellulosic materials, phosphates bring about fire retardancy in polystyrene via char formation. This is suggested to occur through a series of processes consisting of initial peroxide formation, decomposition to alcohols and aldehydes, formation of alkyl-phosphate esters, dehydration and subsequent char formation. Infrared and mass spectral studies support this mechanism.
Resumo:
A creep resistant permanent mould cast Mg alloy MRI 230D was laser surface alloyed with Al and a mixture of Al and Al2O3 using pulsed Nd:YAG laser irradiation at four different scan speeds in order to improve the corrosion and wear resistance. The microstructure, corrosion and wear behavior of the laser surface alloyed material is reported in this manuscript. The coating comprised of a featureless microstructure with cellular-dendritic microstructure near the interface and exhibited good interfacial bonding. A few solidification cracks reaching down to substrate were also observed. The two step coating with Al followed by a mixture of Al and Al2O3 exhibited a slightly better corrosion resistance than the single step coating with Al. In the long run, however, corrosion resistance of both the coatings became comparable to the as-cast alloy. The corroded surface of the laser surface alloyed specimens revealed a highly localized corrosion. The laser surface alloyed specimens exhibited an improvement in wear resistance. The laser scan speed did not exhibit a monotonic trend either in corrosion or wear resistance.
Resumo:
The present work is aimed at developing a bioactive, corrosion resistant and anti bacterial nanostructured silver substituted hydroxyapatite/titania (AgHA/TiO(2)) composite coating in a single step on commercially pure titanium (Cp Ti) by plasma electrolytic processing (PEP) technique. For this purpose 2.5 wt% silver substituted hydroxyapatite (AgHA) nanoparticles were prepared by microwave processing technique and were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM) methods. The as-synthesized AgHA particles with particle length ranging from 60 to 70 nm and width ranging from 15 to 20 nm were used for the subsequent development of coating on Cp Ti. The PEP treated Cp Ti showed both titania and AgHA in its coating and exhibited an improved corrosion resistance in 7.4 pH simulated body fluid (SBF) and 4.5 pH osteoclast bioresorbable conditions compared to untreated Cp Ti. The in vitro bioactivity test conducted under Kokubo SBF conditions indicated an enhanced apatite forming ability of PEP treated Cp Ti surface compared to that of the untreated Cp Ti. The Kirby-Bauer disc diffusion method or antibiotic sensitivity test conducted with the test organisms of Escherichia coli (E. coli) for 24 h showed a significant zone of inhibition for PEP treated Cp Ti compared to untreated Cp Ti. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
In this paper, we report a significant improvement in mechanical and oxidation properties of near eutectic Nb-Si alloys by the addition of aluminum (Al) and control of microstructural length scale. A comparative study of two alloys Nb-18.79at%Si and Nb-12.3at%Si-9at%Al were carried out. The processing for microstructure refinements were carried out by vacuum suction casting in water cooled thick copper mould. It is shown that addition of Al suppresses Nb3Si phase and promotes beta Nb5Si3 phase under nonequilibrium solidification condition. The microstructural length scale and in particular eutectic spacing reduces significantly to 50-100 nm in suction cast ternary alloy. A detailed TEM study shows the presence of delta-Nb11Si4 phase in Nb matrix. The hardness of Nb solid solution can be increased as a consequence to a level observed in Nb3Si intermetallic due to the well oriented precipitates. Compression test yields the ultimate strength of 1.8 +/- 0.1 GPa and engineering strain of 2.3 +/- 0.03%. In comparison, the binary Nb-18.79 at% Si alloy possesses an ultimate strength of 1.35 +/- 0.1 GPa and strain of 0.2 +/- 0.01% when processed under identical conditions. The latter exhibits coarser microstructural length scale (300-400 nm) and a brittle behavior. The indentation fracture toughness of Al containing suction cast alloy shows a value of 20.2 +/- 0.5 MPa root m which represents a major improvement over bulk Nb-Si eutectic alloy. The detailed thermal studies confirm a multifold improvement in oxidation resistance up to 1000 degrees C. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Functionalized cenosphere in PVB composite films were fabricated by melt processing. The composites show higher tensile strength with lower failure strain with increased filler ratio in the matrix. Fractographic images of the samples and DMA studies indicate brittle failure of the matrix. Moisture permeation and water contact angle studies reveal improved hydrophobicity of the matrix, while the factor of surface roughness increases the wettability at higher filler content. Schottky-structured devices encapsulated with functionalized cenosphere indicate enhanced resistance to moisture and increased life time for the devices.
Resumo:
In the search for newer distributed phases that can be used in Ni-composite coatings, inexpensive and naturally available pumice has been identified as a potential candidate material. The composition of the pumice mineral as determined by Rietveld analysis shows the presence of corundum, quartz, mulllite, moganite and coesite phases. Pumice stone is crushed, ball-milled, dried and dispersed in a nickel sulfamate bath and Ni-pumice coatings are electrodeposited at different current densities and magnetic agitation speeds. Pumice particles are uniformly incorporated in the nickel matrix and Ni-pumice composite coatings with microhardness as high as 540 HK are obtained at the lowest applied current density. In the electrodeposited Ni-pumice coatings, the grain size of Ni increases with the applied current density. The overall intensity of texture development is slightly stronger for the Ni-pumice composite coating compared to plain Ni coating and the texture evolution is possibly not the strongest deciding factor for the enhanced properties of Ni-pumice coatings. The wear and oxidation resistances of Ni-pumice coating are commensurate with that of Ni-SiC coating electrodeposited under similar conditions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Multidrug resistance is a major therapeutic challenge faced in the conventional chemotherapy. Nanocarriers are beneficial in the transport of chemotherapeutics by their ability to bypass the P-gp efflux in cancers. Most of the P-gp inhibitors under phase II clinical trial are facing failures and hence there is a need to develop a suitable carrier to address P-gp efflux in cancer therapy. Herein, we prepared novel protamine and carboxymethyl cellulose polyelectrolyte multi-layered nanocapsules modified with Fe3O4 nanoparticles for the delivery of doxorubicin against highly drug resistant HeLa cells. The experimental results revealed that improved cellular uptake, enhanced drug intensity profile with greater percentage of apoptotic cells was attained when doxorubicin loaded magnetic nanocapsules were used in the presence of external magnetic field. Hence, we conclude that this magnetic field assisted nanocapsule system can be used for delivery of chemotherapeutics for potential therapeutic efficacy at minimal dose in multidrug resistant cancers. From the Clinical Editor: Many cancer drugs fail when cancer cells become drug resistant. Indeed, multidrug resistance (MDR) is a major therapeutic challenge. One way that tumor cells attain MDR is by over expression of molecular pumps comprising of P-glycoprotein (P-gp) and multidrug resistant proteins (MRP), which can expel chemotherapeutic drugs out of the cells. In this study, the authors prepared novel protamine and carboxymethyl cellulose polyelectrolyte multi-layered nanocapsules modified with Fe3O4 nanoparticles for the delivery of doxorubicin. The results show that there was better drug delivery and efficacy even against MDR tumor cells. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
The corrosion behaviour of AE42 magnesium alloy and its composites reinforced with Saffil short fibres and SiC particles in various combinations was investigated. The corrosion rate of the unreinforced alloy was the lowest. The composite reinforced with Saffil short fibre alone exhibited slightly lower corrosion rate than the hybrid composites containing both Saffil short fibres and SiC particles. However, there was no specific trend observed in the corrosion rate of the hybrid composites with respect to the SiC particle content. The degradation of corrosion resistance of the composites was mainly attributed to the irregular and loose surface films.
Resumo:
A new humidity-resistant highly sensitive acrylamide-based photopolymeric holographic recording material has been developed. The photopolymer is resistant to the humidity of environment. Diffraction efficiencies near 50% are obtained with exposure energy of 60 mJ/cm(2) in materials of 150 mu m. thickness. Diphenyl iodonium chloride is added to the material and can increase the exposure sensitivity by a factor of more than 4 (to about 28 mJ/cm(2)). An image has been successfully stored in the material with a small distortion. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The role that microstructure plays in the mechanical efficiency of natural cellular materials is examined here. The focus of this study is on elastic behaviour. Two natural materials with microstructures resistant to local bucking: plant stems and animal quills have also been examined.
Resumo:
The capability to automatically identify shapes, objects and materials from the image content through direct and indirect methodologies has enabled the development of several civil engineering related applications that assist in the design, construction and maintenance of construction projects. Examples include surface cracks detection, assessment of fire-damaged mortar, fatigue evaluation of asphalt mixes, aggregate shape measurements, velocimentry, vehicles detection, pore size distribution in geotextiles, damage detection and others. This capability is a product of the technological breakthroughs in the area of Image and Video Processing that has allowed for the development of a large number of digital imaging applications in all industries ranging from the well established medical diagnostic tools (magnetic resonance imaging, spectroscopy and nuclear medical imaging) to image searching mechanisms (image matching, content based image retrieval). Content based image retrieval techniques can also assist in the automated recognition of materials in construction site images and thus enable the development of reliable methods for image classification and retrieval. The amount of original imaging information produced yearly in the construction industry during the last decade has experienced a tremendous growth. Digital cameras and image databases are gradually replacing traditional photography while owners demand complete site photograph logs and engineers store thousands of images for each project to use in a number of construction management tasks. However, construction companies tend to store images without following any standardized indexing protocols, thus making the manual searching and retrieval a tedious and time-consuming effort. Alternatively, material and object identification techniques can be used for the development of automated, content based, construction site image retrieval methodology. These methods can utilize automatic material or object based indexing to remove the user from the time-consuming and tedious manual classification process. In this paper, a novel material identification methodology is presented. This method utilizes content based image retrieval concepts to match known material samples with material clusters within the image content. The results demonstrate the suitability of this methodology for construction site image retrieval purposes and reveal the capability of existing image processing technologies to accurately identify a wealth of materials from construction site images.
Resumo:
In this paper, a serial of Bi3.4Yb0.6Ti3-xVxO12 (BYTV) thin film with different V5+ contents were deposited on Pt/Ti/SiO2/Si substrates by chemical solution deposition (CSD). The crystallized phase and electrical properties of the films were investigated using X-ray diffraction, polarization hysteresis loops, leakage current-voltage, and fatigue test. From our experimental results, it can be found that the ferroelectric properties can be improved greatly using V5+-doped in Bi3.4Yb0.6Ti3O12 (BYT) thin film, compared with the reported BYT thin film. The remanent polarization was enhanced and excellent leakage current characteristic with 10(-11)A at the bias voltage of 4V, which is much lower than the BYT thin film or some reported bismuth layer-structure ferroelectric films. Fatigue test shows that the fabricated films have good anti-fatigue characteristic after 10(10) switching cycles. (c) 2008 Published by Elsevier B.V.
Resumo:
The thermal and flame-retardant properties of homo- and copolyimides were evaluated. Those containing sulfone linkages in the backbone were found to be more flame retardant. Both properties were dependent on the composition. A polyimide/silica nanocomposite was obtained through sol-gel processing. The effects of the addition of silica an the dispersion, interfacial adhesion, fire resistance, mechanical properties, and thermal stability of the composites were investigated. SEM analysis showed a good dispersion of silica with a diameter of 50-300 nm in the organic matrices. The addition of silica increased the fire retardancy and mechanical properties of the composites. (C) 2000 John Wiley & Sons, Inc.