957 resultados para Electrical synapses
Resumo:
Digital image
Resumo:
ALICE (A Large Ion Collider Experiment) is an experiment at CERN (European Organization for Nuclear Research), where a heavy-ion detector is dedicated to exploit the unique physics potential of nucleus-nucleus interactions at LHC (Large Hadron Collider) energies. In a part of that project, 716 so-called type V4 modules were assembles in Detector Laboratory of Helsinki Institute of Physics during the years 2004 - 2006. Altogether over a million detector strips has made this project the most massive particle detector project in the science history of Finland. One ALICE SSD module consists of a double-sided silicon sensor, two hybrids containing 12 HAL25 front end readout chips and some passive components, such has resistors and capacitors. The components are connected together by TAB (Tape Automated Bonding) microcables. The components of the modules were tested in every assembly phase with comparable electrical tests to ensure the reliable functioning of the detectors and to plot the possible problems. The components were accepted or rejected by the limits confirmed by ALICE collaboration. This study is concentrating on the test results of framed chips, hybrids and modules. The total yield of the framed chips is 90.8%, hybrids 96.1% and modules 86.2%. The individual test results have been investigated in the light of the known error sources that appeared during the project. After solving the problems appearing during the learning-curve of the project, the material problems, such as defected chip cables and sensors, seemed to induce the most of the assembly rejections. The problems were typically seen in tests as too many individual channel failures. Instead, the bonding failures rarely caused the rejections of any component. One sensor type among three different sensor manufacturers has proven to have lower quality than the others. The sensors of this manufacturer are very noisy and their depletion voltage are usually outside of the specification given to the manufacturers. Reaching 95% assembling yield during the module production demonstrates that the assembly process has been highly successful.
Resumo:
Transparent glasses in the composition BaO-0.5Li(2)O-4.5B(2)O(3) (BLBO) were fabricated via the conventional melt-quenching technique. X-ray powder diffraction combined with differential scanning calorimetric (DSC) studies carried out on the as-quenched samples confirmed their amorphous and glassy nature, respectively. The crystallization behavior of these glasses has been studied by isothermal and nonisothermal methods using DSC. Crystallization kinetic parameters were evaluated from the Johnson-Mehl-Avrami equation. The value of the Avrami exponent (n) was found to be 3.6 +/- 0.1, suggesting that the process involves three-dimensional bulk crystallization. The average value of activation energy associated with the crystallization of BLBO glasses was 317 +/- 10 kJ/mol. Transparent glass-ceramics were fabricated by controlled heat-treatment of the as-quenched glasses at 845 K/40 min. The dielectric constants for BLBO glasses and glass-ceramics in the 100 Hz-10 MHz frequency range were measured as a function of the temperature (300-925 K). The electrical relaxation and dc conductivity characteristics were rationalized using electric modulus formalism. The imaginary part of the electric modulus spectra was modeled using an approximate solution of the Kohlrausch-Williams-Watts relation. The temperature-dependent behavior of stretched exponent (beta) was discussed for the as-quenched and heat-treated BLBO glasses.
Resumo:
Aqueous solutions of sodium chloride were solidified under the influence of magnetic and electrical fields using two different freezing systems. In the droplet system, small droplets of the solution are introduced in an organic liquid column at −20°C which acts as the heat sink. In the unidirectional freezing system the solutions are poured into a tygon tube mounted on a copper chill, maintained at −70°C, from which the freezing initiates. Application of magnetic fields caused an increase in the spacing and promoted side branching of primary ice dendrites in the droplet freezing system, but had no measurable effect on the dendrites formed in the unidirectional freezing system. The range of electric fields applied in this investigation had no measurable effect on the dendritic structure. Possible interactions between external magnetic and electrical fields have been reviewed and it is suggested that the selective effect of magnetic fields on dendrite spacings in a droplet system could be due to a change in the nucleation behaviour of the solution in the presence of a magnetic field.
Resumo:
The electrical activation energy and optical band-gap of GeSe and GeSbSe thin films prepared by flash evaporation on to glass substrates have been determined. The conductivities of the films were found to be given by Image , the activation energy Ea being 0.53 eV and 0.40 eV for GeSe and GeSbSe respectively. The optical absorption constant α near the absorption edge could be described by Image from which the optical band-gaps E0 were found to be 1.01 eV for GeSe and 0.67 eV for GeSbSe at 300°K. At 110°K the corresponding values of E0 were 1.07 eV and 0.735 eV respectively. The significance of these values is discussed in relation to those of other amorphous semiconductors.
Resumo:
The performance of optoelectronic devices critically depends on the quality of active layer. An effective way to obtain a high quality layers is by creating excess of metal atoms through various heat treatments. Recently, rapid thermal annealing (RTA) has proved a versatile technique for the post-treatment of semiconductor materials as compared to other techniques due to its precise control over the resources. Thus, we carried out a set of experiments on SnS films to explore the influence of RTA treatment on their properties. From these experiments we noticed that the films treated at 400 °C for 1 min in N2 atmosphere have a low electrical resistivity of ~5 Ωcm with relatively high Hall mobility and carrier density of 99 cm2/Vs and 1.3 × 1016 cm−3, respectively. The observed results, therefore, emphasise that it is possible to obtain good quality SnS films through RTA treatment without disturbing their crystal structure.
Resumo:
Electrical resistance measurements are reported on the binary liquid mixtures CS2 + CH3CN and CS2 + CH3NO2 with special reference to the critical region. Impurity conduction seems to be the dominant mechanism for charge transport. For the liquid mixture filled at the critical composition, the resistance of the system aboveT c follows the relationR=R c−A(T−T c) b withb=0·6±0·1. BelowT c the conductivities of the two phases obey a relation σ2−σ1=B(T c−T)β with β=0·34±0·02, the exponent of the transport coefficient being the same as the exponent of the order parameter, an equilibrium property.
Resumo:
Electrical transport in Bi doped amorphous semiconductors (GeSe3.5)100-xBix (x=0,4,10) is studied in a Bridgman anvil system up to a pressure of 90 kbar and down to 77 K. A pressure induced continuous transition from an amorphous semiconductor to a metal-like solid is observed in GeSe3.5. The addition of Bi disturbs significantly the behaviour of resistivity with pressure. The results are discussed in the light of molecular cluster model for GeySe1-y proposed by Phillips.
Resumo:
The variation of electrical resistivity of an insulator-conductor composite, namely, wax-graphite composite, with parameters such as volume fraction, grain size, and temperature has been studied. A model is proposed to explain the observed variations, which assumes that the texture of the composite consists of insulator granules coated with conducting particles. The resistivity of these materials is controlled mainly by the contact resistance between the conducting particles and the number of contacts each particle has with its neighbors. The variation of resistivity with temperature has also been explained with the help of this model and it is attributed to the change in contact area. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
For five binary liquid systems CS2+CH3CN, CS2+CH3NO2, CS2+(CH3CO)2O, C6H12+(CH3CO)2O, n-C7H16+(CH3CO)2O, the electrical resistance has been measured near the critical solution temperatures. The behaviour is universal. Below Tc, the conductivities of the two phases follow σ1−σ2 β, where = T−Tc Tc with β≈0.35. In the one phase region with b≈0.35±0.1 and is positive in some cases and negative in others.
Resumo:
A compact clamp-type high pressure cell for carrying out electrical conductivity measurements on small solid samples of size 1 mm or less at pressures upto 8 GPa (i.e., 80 kbar) and for use down to 77 K has been designed and fabricated. The pressure generated in the sample region has been calibrated at room temperature against the polymorphic phase transitions of Bismuth and Ytterbium. The pressure relaxation of the clamp at low temperatures has been estimated by monitoring the electrical conductivity behavior of lead. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
Composites of Polystyrene-multi wall carbon nanotubes (PS-MWNTs) were prepared with loading up to 7 wt% of MWNTs by simple solvent mixing and drying technique. MWNTs with high aspect ratio similar to 4000 were used to make the polymer composites. A very high degree of dispersion of MWNTs was achieved by ultrasonication technique. As a result of high dispersion and high aspect ratio of the MWNTs electrical percolation was observed at rather low weight fraction similar to 0.0021. Characterization of the as prepared PS-MWNTs composites was done by Electron microscopy (EM), X-ray diffraction technique (XRD) and Thermogravimetery analysis (TGA).
Resumo:
With the liberalisation of electricity market it has become very important to determine the participants making use of the transmission network.Transmission line usage computation requires information of generator to load contributions and the path used by various generators to meet loads and losses. In this study relative electrical distance (RED) concept is used to compute reactive power contributions from various sources like generators, switchable volt-amperes reactive(VAR) sources and line charging susceptances that are scattered throughout the network, to meet the system demands. The transmission line charge susceptances contribution to the system reactive flows and its aid extended in reducing the reactive generation at the generator buses are discussed in this paper. Reactive power transmission cost evaluation is carried out in this study. The proposed approach is also compared with other approaches viz.,proportional sharing and modified Y-bus.Detailed case studies with base case and optimised results are carried out on a sample 8-bus system. IEEE 39-bus system and a practical 72-bus system, an equivalent of Indian Southern grid are also considered for illustration and results are discussed.
Resumo:
Bulk Ge7Se93-xSbx (21 <= x <= 32) glasses are prepared by melt quenching method and electrical switching studies have been undertaken on these samples to elucidate the type of switching and the composition and thickness dependence of switching voltages. On the basis of the compressibility and atomic radii, it has been previously observed that Se-based glasses exhibit memory switching behavior. However, the present results indicate that Ge7Se93-xSbx glasses exhibit threshold type electrical switching with high switching voltages. Further, these samples are found to show fluctuations in the current-voltage (I-V) characteristics. The observed threshold behavior of Ge7Se93-xSbx glasses has been understood on the basis of larger atomic radii and lesser compressibilities of Sb and Ge. Further. the high switching voltages and fluctuations in the I-V characteristics of Ge-Se-Sb samples can be attributed to the high resistance of the samples and the difference in thermal conductivities of different structural units constituting the local structure of these glasses. The switching voltages of Ge7Se93-xSbx glasses have been found to decrease with the increase in the Sb concentration. The observed composition dependence of switching voltages has been understood on the basis of higher metallicity of the Sb additive and also in the light of the Chemically Ordered Network (CON) model. Further, the thickness dependence of switching voltages has been studied to reassert the mechanism of switching.
Resumo:
Two new donor-acceptor type liquid crystalline semiconductors based on benzothiazole have been synthesized. Their structural, photophysical and electronic properties were investigated using X-ray diffraction, atomic force microscopy, cyclic voltammetry, UV-Vis, photoluminescence, and Raman spectroscopy. The liquid crystalline behaviour of the molecules was thoroughly examined by differential scanning calorimetry (DSC) and optical polarizing microscope. The DSC and thermogravimetric analysis (TGA) show that these materials posses excellent thermal stability and have decomposition temperatures in excess of 300 degrees C. Beyond 160 degrees C both molecules show a smectic A liquid crystalline phase that exists till about 240 degrees C. Field-effect transistors were fabricated by vacuum evaporating the semiconductor layer using standard bottom gate/top contact geometry. The devices exhibit p-channel behaviour with hole mobilities of 10(-2) cm(2)/Vs. (C) 2009 Elsevier B.V. All rights reserved.