807 resultados para Eilenberg-MacLane Spaces
Resumo:
In the developed world, we feel the effects of "digital disruption" in our experiences of the spaces of retail, hospitality, entertainment, finance, arts and culture, and even healthcare. This disruption can take many forms: augmentation of physical experience with a digital complement such as the use of a bespoke mobile application to navigate an art museum, ordering food on digital tablets in a restaurant, recording our health data to share with a doctor. We also rate and review our experiences of a wide range of services and share these opinions with diverse others via the social web.
Resumo:
This article argues identifying as lesbian, gay, bisexual, transgender, intersex, queer and/or questioning (LGBTIQ) in rural spaces can produce specific types of policing experiences. While some literature examines the experiences of LGBTIQ people with police, very little has focused on how rurality explicitly shapes these experiences. This is significant considering research highlights how rurality can be connected to pronounced experiences of homophobia and trans-phobia. The article highlights examples from three research projects that explored: LGBTIQ young people's interactions with police; LGBTI people's interactions with police liaison services; and LGBTIQ-identifying police officers. The examples demonstrate the need for further research to examine how policing “happens” with rural LGBTIQ people to ensure more accountable policing policies and practice, and to highlight the complexities of localized, rural policing contexts that can both support and marginalize LGBTIQ people.
Resumo:
The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free,''in,'' and ''out'' eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian: the singularities of the ''out'' eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of ''complete'' sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the ''out'' eigenvectors. The free, ''in'' and ''out'' eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee–Friedrichs model and to the scattering of a spinless particle by a local central potential. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
Let Wm,p denote the Sobolev space of functions on Image n whose distributional derivatives of order up to m lie in Lp(Image n) for 1 less-than-or-equals, slant p less-than-or-equals, slant ∞. When 1 < p < ∞, it is known that the multipliers on Wm,p are the same as those on Lp. This result is true for p = 1 only if n = 1. For, we prove that the integrable distributions of order less-than-or-equals, slant1 whose first order derivatives are also integrable of order less-than-or-equals, slant1, belong to the class of multipliers on Wm,1 and there are such distributions which are not bounded measures. These distributions are also multipliers on Lp, for 1 < p < ∞. Moreover, they form exactly the multiplier space of a certain Segal algebra. We have also proved that the multipliers on Wm,l are necessarily integrable distributions of order less-than-or-equals, slant1 or less-than-or-equals, slant2 accordingly as m is odd or even. We have obtained the multipliers from L1(Image n) into Wm,p, 1 less-than-or-equals, slant p less-than-or-equals, slant ∞, and the multiplier space of Wm,1 is realised as a dual space of certain continuous functions on Image n which vanish at infinity.
Resumo:
A composition operator is a linear operator between spaces of analytic or harmonic functions on the unit disk, which precomposes a function with a fixed self-map of the disk. A fundamental problem is to relate properties of a composition operator to the function-theoretic properties of the self-map. During the recent decades these operators have been very actively studied in connection with various function spaces. The study of composition operators lies in the intersection of two central fields of mathematical analysis; function theory and operator theory. This thesis consists of four research articles and an overview. In the first three articles the weak compactness of composition operators is studied on certain vector-valued function spaces. A vector-valued function takes its values in some complex Banach space. In the first and third article sufficient conditions are given for a composition operator to be weakly compact on different versions of vector-valued BMOA spaces. In the second article characterizations are given for the weak compactness of a composition operator on harmonic Hardy spaces and spaces of Cauchy transforms, provided the functions take values in a reflexive Banach space. Composition operators are also considered on certain weak versions of the above function spaces. In addition, the relationship of different vector-valued function spaces is analyzed. In the fourth article weighted composition operators are studied on the scalar-valued BMOA space and its subspace VMOA. A weighted composition operator is obtained by first applying a composition operator and then a pointwise multiplier. A complete characterization is given for the boundedness and compactness of a weighted composition operator on BMOA and VMOA. Moreover, the essential norm of a weighted composition operator on VMOA is estimated. These results generalize many previously known results about composition operators and pointwise multipliers on these spaces.
Resumo:
The topic of this dissertation is the geometric and isometric theory of Banach spaces. This work is motivated by the known Banach-Mazur rotation problem, which asks whether each transitive separable Banach space is isometrically a Hilbert space. A Banach space X is said to be transitive if the isometry group of X acts transitively on the unit sphere of X. In fact, some weaker symmetry conditions than transitivity are studied in the dissertation. One such condition is an almost isometric version of transitivity. Another investigated condition is convex-transitivity, which requires that the closed convex hull of the orbit of any point of the unit sphere under the rotation group is the whole unit ball. Following the tradition developed around the rotation problem, some contemporary problems are studied. Namely, we attempt to characterize Hilbert spaces by using convex-transitivity together with the existence of a 1-dimensional bicontractive projection on the space, and some mild geometric assumptions. The convex-transitivity of some vector-valued function spaces is studied as well. The thesis also touches convex-transitivity of Banach lattices and resembling geometric cases.
Resumo:
The object of this dissertation is to study globally defined bounded p-harmonic functions on Cartan-Hadamard manifolds and Gromov hyperbolic metric measure spaces. Such functions are constructed by solving the so called Dirichlet problem at infinity. This problem is to find a p-harmonic function on the space that extends continuously to the boundary at inifinity and obtains given boundary values there. The dissertation consists of an overview and three published research articles. In the first article the Dirichlet problem at infinity is considered for more general A-harmonic functions on Cartan-Hadamard manifolds. In the special case of two dimensions the Dirichlet problem at infinity is solved by only assuming that the sectional curvature has a certain upper bound. A sharpness result is proved for this upper bound. In the second article the Dirichlet problem at infinity is solved for p-harmonic functions on Cartan-Hadamard manifolds under the assumption that the sectional curvature is bounded outside a compact set from above and from below by functions that depend on the distance to a fixed point. The curvature bounds allow examples of quadratic decay and examples of exponential growth. In the final article a generalization of the Dirichlet problem at infinity for p-harmonic functions is considered on Gromov hyperbolic metric measure spaces. Existence and uniqueness results are proved and Cartan-Hadamard manifolds are considered as an application.
Resumo:
In this paper I conduct a Foucauldian discourse analysis of a political speech given by Brendon Nelson in 2006 when the Australian Minister for Defence in the Howard Coalition Government. The speech connects conceptualisations of terror, globalization, education and literacy as part of a whole of government security strategy. The analysis examines this speech as an example of a liberal way of governing the conduct of diverse and unpredictable populations. My analysis suggests that the apparatus of government has been strategically used in order to biopolitically contain the rise of complex social forces and protect a set of homogenous cultural values. The purposes of education and uses of literacy are seen as instruments for the inscription of a coded set of values understood to be synonymous with civil society.
Resumo:
This chapter addresses the relevance of composing for young children in creating spaces for social agency. It begins with a working definition of agency, outlines forms of agency and what might constrain it. Referring to case studies of particular children, it then goes on to discuss key themes, which illuminate what is possible and what is at stake when children compose. These overlapping themes include identity (sense of self, belonging), positioning (helping, initiating, befriending, “being bright”), voices (made through sound effects, singing, language style, and appropriating from popular culture and digital worlds), play (appropriating, imagining, designing, and creating), and resistance (not participating, staying silent, moving). Two main cases are drawn upon, those of Ta’Von and Gareth, who demonstrate agency in terms of finding spaces of belonging and meaning-making occasions in the classroom and playground. Vignettes from other children are referred to in order to illustrate common themes.
Resumo:
This paper argues that the staffroom is an important professional learning space where beginning teachers interact to understand who they are and the nature of their professional work. The authors highlight the theoretical importance of space and place in the construction and negotiation of beginning teacher subjectivities. To illustrate the staffroom as a particular place where important professional learning could occur the authors use two narratives based on the lived experiences of two beginning teachers, one in a primary context, the other secondary. The authors conclude by calling for greater research attention to the significance of the staffroom and its interaction with teacher subjectivities. At the level of practice we also call for the teaching profession to recognise staffrooms as important sites of professional learning and places that should support induction and mentoring of beginning teachers. Such recognition could enhance the retention, satisfaction, and effectiveness of new and experienced teachers alike.
Resumo:
Learning automata are adaptive decision making devices that are found useful in a variety of machine learning and pattern recognition applications. Although most learning automata methods deal with the case of finitely many actions for the automaton, there are also models of continuous-action-set learning automata (CALA). A team of such CALA can be useful in stochastic optimization problems where one has access only to noise-corrupted values of the objective function. In this paper, we present a novel formulation for noise-tolerant learning of linear classifiers using a CALA team. We consider the general case of nonuniform noise, where the probability that the class label of an example is wrong may be a function of the feature vector of the example. The objective is to learn the underlying separating hyperplane given only such noisy examples. We present an algorithm employing a team of CALA and prove, under some conditions on the class conditional densities, that the algorithm achieves noise-tolerant learning as long as the probability of wrong label for any example is less than 0.5. We also present some empirical results to illustrate the effectiveness of the algorithm.
Resumo:
The images of Hermite and Laguerre-Sobolev spaces under the Hermite and special Hermite semigroups (respectively) are characterized. These are used to characterize the image of Schwartz class of rapidly decreasing functions f on R-n and C-n under these semigroups. The image of the space of tempered distributions is also considered and a Paley-Wiener theorem for the windowed (short-time) Fourier transform is proved.
Resumo:
In this paper, we study approximatively τ-compact and τ-strongly Chebyshev sets, where τ is the norm or the weak topology. We show that the metric projection onto τ-strongly Chebyshev sets are norm-τ continuous. We characterize approximatively τ-compact and τ-strongly Chebyshev hyperplanes and use them to characterize factor reflexive proximinal subspaces in τ-almost locally uniformly rotund spaces. We also prove some stability results on approximatively τ-compact and τ-strongly Chebyshev subspaces.